精英家教网 > 高中数学 > 题目详情
(2013•河东区二模)已知函数f(x)=sinxcos?+cosxsin?(其中x∈R,0<φ<π),且函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称.
(I)求f(x)的最小正周期及φ的值;
(Ⅱ)若f(α-
3
)=
2
4
,求sin2α的值.
分析:(I)f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,求出最小正周期,由确定出的函数解析式,利用对称轴公式列出关系式,将x=
π
6
代入即可求出φ的值;
(Ⅱ)由第一项确定的函数解析式,根据已知的等式,整理后利用两角和与差的正弦函数公式化简,两边平方后,利用同角三角函数间的基本关系及二倍角的正弦函数公式即可求出sin2α的值.
解答:解:(I)∵f(x)=sin(x+φ),∴f(x)的最小正周期为2π,
∵y=f(2x+
π
4
)=sin(2x+
π
4
+φ),y=sinx的对称轴为x=kπ+
π
2
(k∈Z),
∴令2x+
π
4
+φ=kπ+
π
2
,将x=
π
6
代入得:φ=kπ-
π
12
(k∈Z),
∵0<φ<π,∴φ=
11π
12

(Ⅱ)∵f(α-
3
)=sin(α-
3
+
11π
12
)=sin(α+
π
4
)=
2
2
(sinα+cosα)=
2
4

∴sinα+cosα=
1
2

两边平方得:1+2sinαcosα=1+sin2α=
1
4

则sin2α=-
3
4
点评:此题考查了三角函数的周期性及其求法,以及三角函数的恒等变换,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•河东区二模)设全集U=R,集合A={x|x≥2},B={x|0≤x<5},则集合(?UA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)已知正项数列{an}中,a1=6,点An(an
an+1
)
在抛物线y2=x+1上;数列{bn}中,点Bn(n,bn)在过点(0,1),以方向向量为(1,2)的直线上.
(Ⅰ)求数列{an},{bn}的通项公式;(文理共答)
(Ⅱ)若f(n)=
an,(n为奇数)
bn,(n为偶数)
,问是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,说明理由;(文理共答)
(Ⅲ)对任意正整数n,不等式
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2+an
≤0成立,求正数a的取值范围.(只理科答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)定义域R的奇函数f(x),当x∈(-∞,0)时f(x)+xf'(x)<0恒成立,若a=3f(3),b=(logπ3)•f(logπ3),c=-2f(-2),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.数据如下表(计算过程把频率当成概率).
A小区 低碳族 非低碳族
频率 p 0.5 0.5
B小区 低碳族 非低碳族
频率 p 0.8 0.2
(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;
(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)已知有两个数列{an},{bn},它们的前n项和分别记为Sn,Tn,且数列{an}是各项均为正数的等比数列,Sm=26,前m项中数值最大的项的值为18,S2m=728,又Tn=2n2
(I)求数列{an},{bn}的通项公式.
(II)若数列{cn}满足cn=bnan,求数列{cn}的前n项和Pn

查看答案和解析>>

同步练习册答案