精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lnxx+1.

1)求曲线y=fx)在点(1f1))处的切线方程:

2)若非零实数a使得fxaxax2x∈[1,+)恒成立,求a的取值范围.

【答案】1y=0;(2)(01].

【解析】

1)先对函数求导,然后结合导数的几何意义可求切线斜率,进而可求切线方程;

2)根据题意可构造,原问题可转化为求解函数的最值,结合导数即可求解.

1

由题意可得,

故曲线在点处的切线方程

2)令

因为

,则,易得函数上单调递减,显然不满足题意;

时,易得函数上单调递增,当时,取得最小值

,解可得,

从而可得,

时,易得函数在上单调递减,在上单调递增,

时,取得极小也是最小值

解可得,故

综上可得,的范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为椭圆上两点,过点且斜率为的两条直线与椭圆的交点分别为.

(Ⅰ)求椭圆的方程及离心率;

(Ⅱ)若四边形为平行四边形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:

(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到).(若,则线性相关程度很高,可用线性回归模型拟合);

附:相关系数公式

参考数据.

(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.

方案一:每满元可减元;

方案二:每满元可抽奖一次,每次中奖的概率都为,中奖就可以获得元现金奖励,假设顾客每次抽奖的结果相互独立.

①某位顾客购买了元的产品,该顾客选择参加两次抽奖,求该顾客获得元现金奖励的概率.

②某位顾客购买了元的产品,作为专营店老板,是希望该顾客直接选择返回元现金,还是选择参加三次抽奖?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C内有一点P22),过点P作直线l交圆CAB两点.

1)当l经过圆心C时,求直线l的方程;

2)当直线l的倾斜角为45时,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正四面体ABCD中,MN分别为棱ABCD的中点,一个平面分别与棱BCBDADAC交于EFGH,且MN⊥平面EFGH.给出下列六个结论:①ACBD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四边形EFGH的周长为定值;⑤四边形EFGH的面积有最大值;⑥四边形EFGH一定是矩形,其中,所有正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线上的两点,线段的中点为,直线不经过坐标原点

1)若直线和直线的斜率都存在且分别为,求证:

2)若双曲线的焦点分别为,点的坐标为,直线的斜率为,求由四点所围成四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为菱形,且是等边三角形,点是侧面内的一个动点,且满足,则点所形成的轨迹长度是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知一个动点M在圆上移动,它与定点所连线段的中点为P.

1)求点P的轨迹方程.

2)过定点的直线与点P的轨迹交于AB两点,求弦AB的中点C的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形ABCD中,EFADBD中点,ABADCD=2, BD=2 ,∠BDC=90°,将△ABD沿对角线BD折起至△,使平面⊥平面BCD,则四面体中,下列结论不正确是 ( )

A. EF∥平面

B. 异面直线CD所成的角为90°

C. 异面直线EF所成的角为60°

D. 直线与平面BCD所成的角为30°

查看答案和解析>>

同步练习册答案