精英家教网 > 高中数学 > 题目详情

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

84

83

80

75

68

已知

1)求出的值;

2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;可供选择的数据:

3)用表示用(2)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望

(参考公式:线性回归方程中的最小二乘估计分别为

【答案】(1)90;(2);(3)见解析

【解析】

1)根据y的平均数求出q的值即可;
2)分别求出回归方程的系数的值,求出回归方程即可;
3)根据回归方程分别计算出共有3个“好数据”,求出满足条件的概率,列出分布列,求出均值即可.

1,可得:

,求得

2

所以所求的线性回归方程为

3)利用(2)中所求的线性回归方程

可得,当时,;当时,

时,;当时,

时,;当时,

与销售数据对比可知满足的共有3个“好数据”:

于是的所有可能取值为0123

的分布列为:

于是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+ax-a),其中a是常数.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则,将某些整数染成红色,先染1;再染3个偶数2,4,6;再染6后面最邻近的5个连续奇数7,9,11,13,15;再染15后面最邻近的7个连续偶数16,18,20,22,24,26,28;再染此后最邻近的9个连续奇数29,31,,45;按此规则一直染下去,得到一红色子数列:1,2,4,6,7,9,11,13,15,16,,则在这个红色子数列中,由1开始的第1000个数是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小华与另外名同学进行“手心手背”游戏,规则是:人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得分,其余每人得分.现人共进行了次游戏,记小华次游戏得分之和为,则为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南康某服装厂拟在年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元满足.已知年生产该产品的固定投入为万元,每生产万件该产品需要再投入万元.厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

1)将年该产品的利润万元表示为年促销费用万元的函数;

2)该服装厂年的促销费用投入多少万元时,利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求证:

(Ⅱ)若恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差d0,则下列四个命题:

①数列是递增数列; ②数列是递增数列;

③数列是递增数列; ④数列是递增数列.

其中正确命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案