精英家教网 > 高中数学 > 题目详情
10.已知{an}是正项等差数列,{an}的前n项和记为Sn,a1=3,a2•a3=S5
(1)求{an}的通项公式;
(2)设数列{bn}的通项为bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)利用“裂项求和”即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a1=3,a2•a3=S5
∴(3+d)(3+2d)=$5×3+\frac{5×4}{2}d$,
解得d=2,或-$\frac{3}{2}$(舍去).
∴an=3+2(n-1)=2n+1.
(2)Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
∴bn=$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}$$(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.经过点 P(1,1)的直线在两坐标轴上的截距都是正数,若使截距之和最小,则该直线的方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A,B,C的对边分别为a,b,c,且cos(B-C)+cosA=$\frac{3}{2}$,a2=bc.
(1)求角A的大小;
(2)名△ABC的面积为4$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到y=sin2x-$\sqrt{3}$sin2x-cos2x的图象,只需将y=2sin2x的图象(  )
A.向左平移$\frac{5π}{12}$个单位B.向左平移$\frac{5π}{6}$个单位
C.向右平移$\frac{5π}{12}$个单位D.向右平移$\frac{5π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的极坐标方程是ρ=2sinθ+4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosa}\\{y=tsina}\end{array}\right.$(t为参数)
(1)写出曲线C的参数方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=2$\sqrt{3}$,求直线l的倾斜角a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=|x+1|+|x-2|
(])若关于x的不等式|x+1|+|x-2|≤2m有实数解,求m的取值范围;
(2)若不等式|x+1|+|x-2|≥a+$\frac{2}{a}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离是$\sqrt{3}+\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率,A,B是椭圆C上的两点,且|AB|=$\sqrt{3}$.
(1)求椭圆C的方程;
(2)求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设直线l过坐标原点,它的倾斜角为α,如果将直线l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为$\left\{\begin{array}{l}{[4{5}^{°},18{0}^{°}),α∈[{0}^{°},13{5}^{°})}\\{[α-13{5}^{°},4{5}^{°}),α∈[13{5}^{°},18{0}^{°})}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个与正四棱锥的底面平行的平面把正四棱锥截成两部分,一部分是棱锥,一部分是棱台,已知被截得的棱台的上、下底面的边长分别是方程x2-6x+8=0的两根,且截得的棱台的侧面积等于此棱台上、下底面面积之和,则该四校锥的高为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

同步练习册答案