精英家教网 > 高中数学 > 题目详情
18.定义在R上的可到函数f(x)满足:对任意x∈R有f(x)+f(-x)=$\frac{{x}^{2}}{2}$,且在区间[0,+∞)上有2f′(x)>x,若f(a)-f(2-a)≥a-1,则实数a的取值范围为a≥1.

分析 令g(x)=2f(x)-$\frac{1}{2}$x2,求出函数的导数,结合函数的奇偶性求出函数的单调性,所求不等式转化为g(a)>g(2-a),根据函数的单调性解出即可.

解答 解:令g(x)=2f(x)-$\frac{1}{2}$x2
则g′(x)=2f′(x)-x,
∵在区间[0,+∞)上有2f′(x)>x,
∴g(x)在(0,+∞)递增,
∵f(x)+f(-x)=$\frac{{x}^{2}}{2}$,
∴g(x)+g(-x)=0,
∴g(x)是奇函数,
∴g(x)在R递增,
若f(a)-f(2-a)≥a-1,
则g(a)-g(2-a)≥0,
即g(a)≥g(2-a),
∴a≥2-a,
∴a≥1,
故答案为:a≥1.

点评 本题考查了函数的单调性、奇偶性问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若a=1,c=2,B=60°,则边b等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列0,2,4,6,8,10,…按如下方法分组:(0),(2,4),(6,8,10),(12,14,16,18),…则第n组中n个数的和是(  )
A.$\frac{n(2{n}^{2}-n-1)}{2}$B.n(n2-1)C.n3-1D.$\frac{n({n}^{2}-1)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A、B、C为△ABC的内角,tanA、tanB是关于x的方程x2+$\sqrt{3}$mx-m+1=0的两个实根.
(1)求C的大小;
(2)若AB=$\sqrt{6}$,AC=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.观察:32-1=8,52-1=24,72-1=48,92-1=80,…,则第n个等式为(  )
A.(2n-1)2-1=4n2-4nB.(3n-1)2-1=9n2-6nC.(2n+1)2-1=4n2+4nD.(3n+1)2-1=9n2+6n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.[重点中学做]设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$.已知$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow{b}$•$\overrightarrow{h}$,|$\overrightarrow{AH}$|=1,|$\overrightarrow{BH}$|=$\sqrt{2}$,|$\overrightarrow{BC}$|=$\sqrt{3}$,则∠C=(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,四边形ABCD中,AB=AD=2,△BCD为正三角形,设∠BAD=α(α∈(0,π)).
(1)当α=$\frac{π}{2}$时,求$\overrightarrow{AC}$•$\overrightarrow{BC}$的值;
(2)[重点中学做]当α为多少时,△ABC的面积S最大?并求S的最大值.
(3)[普通中学做]记△BCD的面积S=f(α),求函数g(α)=f(α)-2sinα的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,满足“f(mn)=f(m)+f(n)”的函数是(  )
A.f(x)=xB.f(x)=x2C.f(x)=2xD.f(x)=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在用数学归纳法证明等式1+2+3+…+2n-1=2n2-n(n∈N*)的第(ii)步中,假设n=k(k≥1,k∈N*)时原等式成立,则当n=k+1时需要证明的等式为(  )
A.1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
B.1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1)
C.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
D.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1)

查看答案和解析>>

同步练习册答案