精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (为常数, 为自然对数的底数).

(Ⅰ)当时,讨论函数在区间上极值点的个数;

(Ⅱ)当 时,对任意的都有成立,求正实数的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:Ⅰ)第一步求函数的导数,第二步再设,并且求以及时, ,分析函数的单调性,得到函数的取值范围,并且根据 ,讨论和函数的极值以及端点值的大小关系,得到函数的极值点的个数;(Ⅱ不等式等价于 ,求的最大值小于的最小值,即求得的取得范围.

试题解析:(Ⅰ) 时, ,记

时, 时,

所以当时, 取得极小值,又

,所以

(ⅰ)当,即时, ,函数在区间上无极值点;

(ⅱ)当时, 有两不同解,

函数在区间上有两个极值点;

(ⅲ)当时, 有一解,

函数在区间上有一个极值点;

(ⅳ)当时, ,函数在区间

无极值点;

(Ⅱ)当时,对任意的都有

,即

,当 时,

所以当时, 取得最大值

,当 时,

所以当时, 取得最小值

所以只需要 ,即正实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于的方程有两个不等实根,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知实数满足方程,当)时,由此方程可以确定一个偶函数,则抛物线的焦点到点的轨迹上点的距离最大值为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列.

(1)设数列分别为等差、等比数列,若 ,求

(2)设的首项为1,各项为正整数, ,若新数列是等差数列,求数列 的前项和

(3)设是不小于2的正整数),,是否存在等差数列,使得对任意的,在之间数列的项数总是?若存在,请给出一个满足题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且∥面BDM.

(1)求直线PC与平面BDM所成角的正弦值;

(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设=(1+cos x,1+sin x),=(1,0),=(1,2).
(1)求证:()⊥();
(2)求||的最大值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为常数, 为自然对数的底数).

(Ⅰ)当时,讨论函数在区间上极值点的个数;

(Ⅱ)当 时,对任意的都有成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0≤φ≤)的部分图象,其图象与y轴交于点(0,
(Ⅰ)求函数的解析式;
(Ⅱ)若 , 求-的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= , g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是(  )
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

同步练习册答案