精英家教网 > 高中数学 > 题目详情

【题目】如图所示,有三座城市,城在城的正西方向,且两座城市之间的距离为城在城的正北方向,且两座城市之间的距离为.由城到城只有一条公路,甲有急事要从城赶到城,现甲先从城沿公路步行到点(不包括两点)处,然后从点处开始沿山路赶往城.若甲在公路上步行速度为每小时,在山路上步行速度为每小时,设(单位:弧度),甲从城赶往城所花的时间为(单位:).

(1)求函数的表达式,并求函数的定义域;

(2)当点在公路上何处时,甲从城到达城所花的时间最少,并求所花的最少的时间的值.

【答案】(1)定义域为(2)点所在的位置为处,甲所花最短时间为.

【解析】试题分析:(1)先在直角三角形中用表示,再根据时间等于路程除以速度得,最后根据实际意义得定义域,(2)先求函数导数,再求导函数零点,列表分析导函数符号变化规律,确定单调性,进而确定最值取法.

试题解析:解:(1)在中,

.

由图知,故函数的定义域为

(2)令

.

,可得,由可解得.

故函数的增区间为,减区间为

故当时,函数.

故点所在的位置为处,甲所花最短时间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图后,记“输出是好点”为事件A.

(1)若为区间内的整数值随机数,为区间内的整数值随机数,求事件A发生的概率;

(2)若为区间内的均匀随机数,为区间内的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数

(Ⅰ)判断是否为函数的极值点,并说明理由;

(Ⅱ)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ x2﹣ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要想得到函数y=sin2x+1的图象,只需将函数y=cos2x的图象(
A.向左平移 个单位,再向上平移1个单位
B.向右平移 个单位,再向上平移1个单位
C.向左平移 个单位,再向下平移1个单位
D.向右平移 个单位,再向上平移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最大值;

(2)若对于任意,均有,求正实数的取值范围;

(3)是否存在实数,使得不等式对于任意恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x-1|+|x-2|.

(1)求不等式f(x)≥3的解集;

(2)若存在实数x满足f(x)≤-a2+a+7,求实数a的取值范围.

查看答案和解析>>

同步练习册答案