精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.
x-10245
y12021
若函数y=f(x)-a有4个零点,则实数a的取值范围为(  )
A、[1,2)
B、[1,2]
C、(2,3)
D、[1,3)
考点:根的存在性及根的个数判断,导数的运算
专题:函数的性质及应用,导数的综合应用
分析:先由导函数的图象和原函数的关系画出原函数的大致图象,再借助与图象分析出函数y=f(x)与直线y=a的图象交点的个数,进而得到函数y=f(x)-a有4个零点时,a的取值范围.
解答: 解:由导函数y=f′(x)的图象可知,函数在[-1,0],[2,4]上为增函数,
则[0,2],[4,5]上为减函数,
且函数在x=0和x=4取得极大值f(0)=2,f(4)=2,
在x=2取得极小值f(2)=0,
则函数f(x)的大致图象如图:

由图得若函数y=f(x)-a有4个零点,
则函数y=f(x)与直线y=a的图象有四个交点
故-1≤a<2
故a的取值范围为[1,2),
故选:A
点评:本题主要考查导函数和原函数的单调性之间的关系.利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知4名男生、4名女生排成一排,求:
(1)男女相间有多少种排法?
(2)女生在一起有多少种排法?
(3)男生甲、乙不相邻有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

某联欢晚会矩形抽奖活动,举办方设置了甲乙两种抽奖方案,方案甲的中奖率为
2
3
,中奖可以获得2分,方案乙的中奖率为
2
5
,中奖可以得3分,未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲,小红选择方案乙,记他们的累计得分为X,求X<4的概率;
(2)若小明小红两人选择同一方案抽奖,问:他们选择何种方案抽奖,累计得分的数学期望最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|=1,<
a
b
>=60°,向量2t
a
+7
b
a
+t
b
夹角为钝角,求t范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
①“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件
②函数f(x)=sin(2x-
π
6
)最小正周期为π,且图象关于直线x=
π
3
对称
③线性回归直线至少经过样本点中的一个
④?x∈R,2x-1≥0的否定是?x∈R,2x-1<0.
A、②B、②④C、①②③D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在(x2-
1
x
5的展开式中,第4项的系数是(  )
A、∁54
B、-∁54
C、∁53
D、-C53

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=
2
,b=
3
,B=
π
3
,则A等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=logax(a>0且a≠1),若f(2)=
1
2
,则f(
1
2
)=(  )
A、2
B、-2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段没有公共点,则直线l的倾斜角的取值范围是
 

查看答案和解析>>

同步练习册答案