【题目】已知幂函数(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.
科目:高中数学 来源: 题型:
【题目】已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,设面面MPQ=,则下列结论中不成立的是( )
A.面ABCD
B.AC
C.面MEF与面MPQ不垂直
D.当x变化时,不是定直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为矩形, 平面, ,点为的中点,点在棱上移动.
(1)当点为的中点时,试判断与平面的位置关系,并说明理由;
(2)求证:无论点在的何处,都有;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出四个命题
(1)若sin2A=sin2B,则△ABC为等腰三角形;
(2)若sinA=cosB,则△ABC为直角三角形;
(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;
(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形.
以上正确命题的是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a是实数,函数f(x)= (x-a).
(1)求函数f(x)的单调区间;
(2)设g(a)为f(x)在区间[0,2]上的最小值.
①写出g(a)的表达式;
②求a的取值范围,使得-6≤g(a)≤-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在坐标原点,焦点在轴上,焦点到短轴端点的距离为2,离心率为.
(Ⅰ)求该椭圆的方程;
(Ⅱ)若直线与椭圆交于, 两点且,是否存在以原点为圆心的定圆与直线相切?若存在求出定圆的方程;若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com