精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn=10n-n2.求数列{an}的通项公式.

分析 Sn=10n-n2.当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1

解答 解:∵Sn=10n-n2
∴当n=1时,a1=9;
当n≥2时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n.
当n=1时上式也成立,
∴an=11-2n.

点评 本题考查了递推关系的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.班上有四位同学申请A,B,C三所大学的自主招生,若每位同学只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有2人申请A大学或B大学的概率;
(2)求申请C大学的人数X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的方程${({\frac{2}{3}})^x}=\frac{1+a}{1-a}$有负实数根,则a的取值范围是(  )
A.(-1,1)B.(0,1)C.(-1,0)D.$({-\frac{2}{3},\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条弦的长等于半径,则这条弦所对的圆心角是____弧度.(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x|x-a|,0≤x≤1的最大值是g(a),求g(a)的解析式,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列四个命题:①α∈(0,$\frac{π}{2}$)时,sinα+cosα>1;②α∈($\frac{π}{2}$,π)时,若sinα+cosα<0,则|cosα|>|sinα|;③对任意的向量,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;④若$\overrightarrow{a}$≠$\overrightarrow{0}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$,正确的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)在[a,b]上有定义,若对象x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P.现给出如下结论:
①f(x)=2x2,在[1,3]上具有性质P;
②f(x2)在[1,$\sqrt{3}$]上具有性质P;
③f(x)在[1,3]上的图象是连续不断的;
④若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
其中正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)与g(x)分别由如表给出,那么g(f(2))=4.
x 1 2 3 4
 f(x) 2 3 4 1
 x 1 2 3 4
 g(x) 2 1 4 3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,将直角三角形ABC以斜边AB上的高CD为棱折成一个三棱锥C一ADB1,且使得平面ACD⊥平面B1CD,记BC=a,AC=b(a,b为变量),则∠B1CA的最小值为(  )
A.45°B.60°C.75°D.30°

查看答案和解析>>

同步练习册答案