分析 (I)由a1,a2+1,a3成等差数列,数列{an+1}为公比为2的等比数列.可得2(a2+1)=a1+a3,an+1=$({a}_{1}+1)•{2}^{n-1}$.解得a1,a2.即可得出.
(II)bn=an•log2(an+1)=n•2n-n,利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(I)∵a1,a2+1,a3成等差数列,数列{an+1}为公比为2的等比数列.
∴2(a2+1)=a1+a3,an+1=$({a}_{1}+1)•{2}^{n-1}$.
∴2(a2+1)=a1+a3,a2+1=2(a1+1),a3+1=4(a1+1).
解得a1=1,a2=3.
∴an=2n-1.
(II)bn=an•log2(an+1)=n(2n-1)=n•2n-n,
设数列{n•2n}的前n项和为An,
则An=2+2×22+3×23+…+n•2n,
2An=22+2×23+…+(n-1)•2n+n•2n+1,
∴-An=2+22+23+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1,
化为:An=(n-1)•2n+1+2.
∴Tn=(n-1)•2n+1+2-$\frac{n(n+1)}{2}$.
∴Tn+$\frac{{n}^{2}+n}{2}$>2015,(n-1)•2n+1+2>2015,n≥8.
∴满足Tn+$\frac{{n}^{2}+n}{2}$>2015的最小正整数n=8.
点评 本题考查了等差数列与等比数列通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$或$\frac{2\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com