精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1-|x|)则关于函数h(x)有下列命题:
①h(x)为图象关于y轴对称;
②h(x)是奇函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为________(注:将所有正确命题的序号都填上).

①④
分析:先根据函数f(x)=2x的图象与函数g(x)的图象关于直线y=x对称,求出函数g(x)的解析式,然后根据奇偶性的定义进行判定,根据复合函数的单调性进行判定可求出函数的最值,从而得到正确选项.
解答:∵函数f(x)=2x的图象与函数g(x)的图象关于直线y=x对称,
∴g(x)=log2x
∴h(x)=g(1-|x|)=log2(1-|x|),x∈(-1,1)
而h(-x)=log2(1-|-x|)=h(x)
则h(x)不是奇函数是偶函数,故①正确,②不正确
该函数在(-1,0)上单调递增,在(0,1)上单调递减
∴h(x)有最大值为0,无最小值
故选项③不正确,④正确
故答案为:①④
点评:本题主要考查了反函数,以及函数的奇偶性、单调性和最值,同时考查了奇偶函数图象的对称性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案