20£®ÓÐ5λͬѧÏàÔ¼²Î¼ÓijһµçÊÓÓéÀÖ½ÚÄ¿£¬ÆäÖÐÓÐ2ÈËÒѾ­²Î¼Ó¹ý£¬ÁíÍâ3ÈËûÓвμӹý£®
£¨1£©´ÓÕâЩͬѧÖÐËæ»úÑ¡³ö2ÈË£¬ÇóÕâÁ½Î»Í¬Ñ§ÖÐÖÁÉÙÓÐһλ²Î¼Ó¹ý´Ë½ÚÄ¿µÄ¸ÅÂÊ£®
£¨2£©Èô²Î¼Ó´Ë½ÚÄ¿ÐèҪԤѡ£¬²Î¼Ó¹ý´Ë½ÚÄ¿µÄͬѧͨ¹ýµÄ¸ÅÂÊΪ$\frac{1}{2}$£¬Ã»ÓвμӹýµÄͬѧͨ¹ýԤѡµÄ¸ÅÂÊÊÇ$\frac{1}{3}$£¬¼Çͨ¹ýԤѡµÄÈËÊýΪX£®ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÏÈÇó³öÁ½È˶¼Ã»ÓвμӽÚÄ¿µÄ¸ÅÂÊ£¬ÔÙÓɶÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½ÄÜÇó³öÕâÁ½Î»Í¬Ñ§ÖÐÖÁÉÙÓÐһλ²Î¼Ó¹ý´Ë½ÚÄ¿µÄ¸ÅÂÊ£®
£¨2£©ÓÉÌâÒâµÃͨ¹ýԤѡµÄÈËÊýXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬5£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©´ÓÕâ5ÃûͬѧÖÐËæ»úÑ¡³ö2ÈË£¬¹²ÓÐ${C}_{5}^{2}$=10ÖÖÇé¿ö£¬
´ÓÕâ5ÃûͬѧÖÐËæ»úÑ¡Á½ÈË£¬ÇÒÁ½È˶¼Ã»Óвμӹý´Ë½ÚÄ¿µÄÇé¿öÓÐ${C}_{3}^{2}$=3ÖÖ£¬
¡àÕâÁ½Î»Í¬Ñ§ÖÐÖÁÉÙÓÐһλ²Î¼Ó¹ý´Ë½ÚÄ¿µÄ¸ÅÂÊ£º
p=1-$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=0.7£®
£¨2£©ÓÉÌâÒâµÃͨ¹ýԤѡµÄÈËÊýXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬5£¬
P£¨X=0£©=$£¨\frac{1}{2}£©^{2}£¨\frac{2}{3}£©^{3}$=$\frac{8}{108}$£¬
P£¨X=1£©=£¨${C}_{2}^{1}£¨\frac{1}{2}£©^{2}£¨\frac{2}{3}£©^{3}+£¨\frac{1}{2}£©^{2}{C}_{3}^{1}£¨\frac{1}{3}£©$$£¨\frac{2}{3}£©^{2}=\frac{28}{108}$£¬
P£¨X=2£©=${C}_{2}^{2}£¨\frac{1}{2}£©^{2}£¨\frac{2}{3}£©^{3}$+$£¨\frac{1}{2}£©^{2}{C}_{3}^{2}£¨\frac{1}{2}£©^{2}•\frac{2}{3}$+${C}_{2}^{1}£¨\frac{1}{2}£©^{2}{C}_{3}^{1}£¨\frac{2}{3}£©^{3}$$•\frac{1}{3}$=$\frac{38}{108}$£¬
P£¨X=3£©=${C}_{2}^{2}£¨\frac{1}{2}£©^{2}{C}_{3}^{1}£¨\frac{2}{3}£©^{2}•\frac{1}{3}+{C}_{2}^{1}£¨\frac{1}{2}£©^{2}$$•{C}_{3}^{2}£¨\frac{1}{3}£©^{2}•\frac{2}{3}$+$£¨\frac{1}{2}£©^{2}{C}_{3}^{3}£¨\frac{1}{3}£©^{3}$=$\frac{25}{108}$£¬
P£¨X=4£©=${C}_{2}^{2}£¨\frac{1}{2}£©^{2}{C}_{3}^{2}£¨\frac{1}{3}£©^{2}+{C}_{2}^{1}£¨\frac{1}{2}£©^{2}$$•{C}_{3}^{3}£¨\frac{1}{3}£©^{3}$=$\frac{8}{108}$£¬
P£¨X=5£©=${C}_{2}^{2}£¨\frac{1}{2}£©^{2}{C}_{3}^{3}£¨\frac{1}{3}£©^{3}$=$\frac{1}{108}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º

 X 0 1 2 3 5
 P $\frac{8}{108}$ $\frac{28}{108}$ $\frac{38}{108}$ $\frac{25}{108}$ $\frac{8}{108}$ $\frac{1}{108}$
¡àEX=$0¡Á\frac{8}{108}+1¡Á\frac{28}{108}+2¡Á\frac{38}{108}+3¡Á\frac{25}{108}$+$4¡Á\frac{8}{108}+5¡Á\frac{1}{108}$=2£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍÖ®Ò»£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª$\overrightarrow{m}$=£¨sinA£¬$\frac{1}{2}$£©Óë$\overrightarrow{n}$=£¨3£¬sinA+$\sqrt{3}$cosA£©¹²Ïߣ¬ÆäÖÐAΪ¡÷ABCµÄÄڽǣ®
£¨1£©Çó½ÇA£»
£¨2£©Èôa=$\sqrt{3}$£¬S¡÷ABC=$\frac{\sqrt{3}}{2}$£¬Çó±ß³¤bºÍ½ÇBµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªËÄÀâÖùABCD-A1B1C1D1µÄµ×ÃæÊDZ߳¤Îª2µÄÕý·½ÐÎÇÒAA1¡Íµ×ÃæABCD£¬AA1=4£¬EΪBCµÄÖе㣬FΪCC1µÄÖе㣮
£¨1£©ÇóÖ¤£ºÖ±ÏßEF¡ÎƽÃæABD1£»
£¨2£©ÇóÈýÀâ׶F-A1EC1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª¡÷ABCµÄÈý±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÆäÖÐÈÎÒâÁ½±ß³¤¾ù²»ÏàµÈ£¬Èô$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$³ÉµÈ²îÊýÁУ®
£¨1£©±È½Ï$\sqrt{\frac{b}{a}}$Óë$\sqrt{\frac{c}{b}}$µÄ´óС£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨2£©ÇóÖ¤£º½ÇB²»¿ÉÄÜÊǶ۽ǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®2013ÄêÇ°£¬ÎÒ¹úÿÄêÀË·ÑÔ¼500ÒÚ¹«½ïÁ¸Ê³£¬½Ó½üÈ«¹úÁ¸Ê³×ܲúÁ¿µÄÊ®·ÖÖ®Ò»£¬³ÉΪÁËÊÀ½çÉÏ×î´óµÄÈËΪÔÖº¦£®´Ó2013Äê1Ô³õ¿ªÊ¼£¬¹«ÖÚ×ÔÖ÷·¢ÆðÒ»ÏÒéÊÐÃñÀ÷ÐнÚÔ¼£¬·´¶ÔÀË·Ñ£¬ÔÚ·¹µê¾Í²ÍʱÊÊÁ¿µã²Í£¬Ê£²Í´ò°ü£¬¡°¹âÅÌ¡±À뿪µÄ´óÐ͹«Òæ»î¶¯£º¡°¹âÅÌÐж¯¡±£®ÎªÁËÁ˽â»î¶¯Ð§¹û£¬Ä³ÐÂÎÅýÌå¶Ô900ÃûÊÐÃñ½øÐÐÁËÍøÉϵ÷²é£¬ËùÓвÎÓëµ÷²éµÄÊÐÃñÖУ¬³Ö¡°Ö§³Ö¡±¡°±£Áô¡±ºÍ¡°²»Ö§³Ö¡±Ì¬¶ÈµÄÈËÊýÈçϱíËùʾ£º
Ö§³Ö±£Áô²»Ö§³Ö
450300150
£¨¢ñ£©ÔÚ³Ö¡°Ö§³Ö¡±¡¢¡°±£Áô¡±¡¢¡°²»Ö§³Ö¡±Ì¬¶ÈµÄÊÐÃñÖУ¬Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡6¸öÈ˽øÐе绰²É·Ã£¬Ó¦·Ö±ð³é¶àÉÙÈË£¿
£¨¢ò£©½«£¨1£©Öгé³öµÄ6¸öÈË¿´³ÉÒ»¸ö×ÜÌ壬´ÓÕâ6¸öÈËÖÐÈÎÒâÑ¡È¡3ÈË¿ªÒ»¸ö×ù̸»á£¬ÇóÕâ3ÈËÖÐÖÁÉÙÓÐ1È˳֡°±£Áô¡±Ì¬¶ÈµÄ¸ÅÂÊ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É躯Êýf£¨x£©=lnx+x2-2ax+a2£¬a¡ÊR
£¨1£©Èôa=0£¬Çóº¯Êýf£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵ£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ[$\frac{1}{2}$£¬2]ÉÏ´æÔÚµ¥µ÷µÝÔöÇø¼ä£¬ÊÔÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©Çóº¯Êýf£¨x£©µÄ¼«Öµµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÔÍÖÔ²$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1µÄ×ó½¹µãΪ½¹µãµÄÅ×ÎïÏߵıê×¼·½³ÌÊÇ£¨¡¡¡¡£©
A£®y2=16xB£®y2=-8xC£®y2=-16xD£®x2=-16y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¸´Êý£¨$\frac{i}{1+i}$£©2=£¨¡¡¡¡£©
A£®$\frac{1}{2}$iB£®$\frac{1}{2}$C£®-$\frac{1}{2}$iD£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼËùʾ£¬ÒÑÖªÀâ׶V-ABCµÄµ×Ãæ»ýÊÇ64cm2£¬Æ½ÐÐÓÚµ×ÃæµÄ½ØÃæÃæ»ýÊÇ4cm2£¬Àâ׶¶¥µãVÔÚ½ØÃæºÍµ×ÃæÉϵÄÉäÓ°·Ö±ðÊÇO1£¬O£¬¹ýO1OµÄÈýµÈ·Öµã×÷ƽÐÐÓÚµ×ÃæµÄ½ØÃ棬Çó¸÷½ØÃæµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸