精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{a}{x}$+lnx在点(1,a)处的切线斜率为2,则实数a的值为-1.

分析 求导数,利用函数f(x)=$\frac{a}{x}$+lnx在点(1,a)处的切线斜率为2,建立方程,即可求出a的值.

解答 解:∵f(x)=$\frac{a}{x}$+lnx,
∴f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$,
∵函数f(x)=$\frac{a}{x}$+lnx在点(1,a)处的切线斜率为2,
∴f′(1)=-a+1=2,
∴a=-1.
故答案为:-1.

点评 本题考查导数的几何意义,考查学生的计算能力,正确求导是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{3}$,且α,β∈(0,π),求α-2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过平面区域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$内一点作圆O:x2+y2=1的两条切线,切点分别为A、B,记∠APB=α,则当α最小时,cosα的值为(  )
A.$\frac{9}{10}$B.$\frac{7}{10}$C.$\frac{\sqrt{5}}{20}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为4$\sqrt{3}$,椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程;
(2)设P为椭圆C的下顶点,椭圆C与直线y=kx+m相交于不同的两点M,N,当|PM|=|PN|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点P(-1,3),并且在两轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=|2x-1|+|ax-1|(a>0)
(1)当a=2时,解不等式4f(x)≥f(0)
(2)若对任意x∈R,不等式4f(x)≥f(0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x),当x≤0时,f(x)=$\left\{\begin{array}{l}{(x+2)^{2},x∈(-∞,-1)}\\{(\frac{1}{2})^{x}-1,x∈[-1,0]}\end{array}\right.$,则f(f(3))=(  )
A.-9B.-1C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tan(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tan(α-$\frac{π}{4}$)=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=3($\overrightarrow{a}$-$\overrightarrow{b}$).求证:A、B、D三点共线.

查看答案和解析>>

同步练习册答案