精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-2x+5,
(1)若函数f(x)在(-
2
3
,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在实数a,使得f(x)在(-2,
1
6
)上单调递减,若存在,试求a的取值范围;若不存在,请说明理由;
(3)若a=-
1
2
,当x∈(-1,2)时不等式f(x)<m有解,求实数m的取值范围.
分析:(1)求导函数,根据函数f(x)在(-
2
3
,1)上单调递减,在(1,+∞)上单调递增,可得x=1是方程f′(x)=0的根,从而可求实数a的值;
(2)由题意得:f′(x)=3x2+2ax-2≤0在(-2,
1
6
)上恒成立,由此可实数a的取值范围;
(3)求导函数,求导函数x∈(-1,2)时,f(x)的最小值,欲使不等式f(x)<m有解,只需m≥[f(x)]min,从而可求实数m的取值范围.
解答:解:(1)求导函数可得f′(x)=3x2+2ax-2,
∵函数f(x)在(-
2
3
,1)上单调递减,在(1,+∞)上单调递增,
∴x=1是方程f′(x)=0的根,解得a=-
1
2
 …..(3分)
(2)由题意得:f′(x)=3x2+2ax-2≤0在(-2,
1
6
)上恒成立,
f′(-2)≤0
f′(
1
6
)≤0
,∴
12-4a-2≤0
1
12
+
a
3
-2≤0
,∴
5
2
≤a≤
23
4
 …..(7分)
(3)当a=-
1
2
时,f(x)=x3-
1
2
x2-2x+5,,
由f′(x)=0得x=-
2
3
或1
列表:
x -1 (-1,-
2
3
-
2
3
(-
2
3
,1)
1 (1,2) 2
f′(x) + 0 - 0 +
f(x)
11
2
128
27
7
2
7
∴x∈(-1,2)时,f(x)的最小值为
7
2
,此时x=1
欲使不等式f(x)<m有解,只需m≥[f(x)]min=
7
2

∴实数m的取值范围为[
7
2
,+∞).      …(12分)
点评:本题考查导数知识的运用,考查恒成立问题,考查函数的最值,区分恒成立与有解是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案