精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\frac{{x}^{5}+sinx}{x}$的导数是$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$.

分析 根据导数的运算法则求导,即可.

解答 解:f(x)=$\frac{{x}^{5}+sinx}{x}$,
∴f′(x)=($\frac{{x}^{5}+sinx}{x}$)′=$\frac{x(5{x}^{4}+cosx)-({x}^{5}+sinx)}{{x}^{2}}$=$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$,
故答案为:=$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$.

点评 本题考查了导数的运算法则,关键是掌握基本导数的公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某学校有教师132人,职工33人,学生1485人.为了解食堂情况,拟采用分层抽样的方法从以上人员中抽取50人进行抽查,则在学生中应抽取45 人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.执行如图的程序框图,若p=7,则输出的s=$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个几何体的三视图,则这个几何体的体积是(  )
A.$\frac{7}{3}π$B.$\frac{10}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x-$\frac{1}{x}$-alnx.
(1)若曲线y=f(x)在点(1,f(1))处的切线与圆x2+y2=$\frac{1}{2}$,求a的值;
(2)当a∈[0,2]时,函数g(x)=x-lnx-$\frac{1}{e}$,若在[1,e]上至少存在一根x0,使得f(x0)≥g(x0),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知b2+4c2=8,sinB+2sinC=6bsinAsinC,则△ABC的面积取最大值时有a2=$\frac{15-8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在R上的任意一个函数,请以f(x)和f(-x)为基础构造函数F(x):
(1)使F(x)为偶函数;
(2)使F(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知cosα=-2sinα,求下列各式的值.
(1)$\frac{2sinα-cosα}{sinα+3cosα}$;
(2)sin2α+2sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\left\{\begin{array}{l}{-2,-1≤x<0}\\{3x-2,x≥0}\end{array}\right.$
(1)写出函数的定义域;
(2)求f(-$\frac{1}{2}$)与f(3)的值.

查看答案和解析>>

同步练习册答案