【题目】已知点为抛物线的焦点,点、在抛物线上,且、、三点共线.若圆的直径为.
(1)求抛物线的标准方程;
(2)过点的直线与抛物线交于点,,分别过、两点作抛物线的切线,,证明直线,的交点在定直线上,并求出该直线.
【答案】(1)(2)证明见解析;定直线
【解析】
(1)由题可知中点为,,设、到准线的距离分别为,.到准线的距离为,由梯形中位线得到方程,再根据抛物线定义求解.
(2)设,,由,得,则,分别设直线的方程为,直线的方程为,联立,方程,求得交点坐标,再由直线方程为,与抛物线联立,利用韦达定理求解.
(1)由题可知中点为,设、到准线的距离分别为,.到准线的距离为,
则,由抛物线定义得,,所以,
所以,即.
所以抛物线的标准方程为.
(2)设,,由,得,则,
所以直线的方程为,直线的方程为,
联立,方程得,即,的点坐标为.
因为过焦点,
由题可知直线的斜率存在,所以设直线方程为,
与抛物线联立得,
所以,,
所以直线,的交点在定直线上.
科目:高中数学 来源: 题型:
【题目】在一次考试中,某班级50名学生的成绩统计如下表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.
分数 | 69 | 73 | 74 | 75 | 77 | 78 | 79 | 80 | 82 | 83 | 85 | 87 | 89 | 93 | 95 | 合计 |
人数 | 2 | 4 | 4 | 2 | 3 | 4 | 6 | 3 | 3 | 4 | 4 | 5 | 2 | 3 | 1 | 50 |
经计算,样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为X,并根据以下不等式进行评判:
①;
②;
③.
评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.
(1)试判断该份试卷被评为哪种等级;
(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】实验中学从高二级部中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1个相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级6名选手,现从每个班级6名选手中随机抽取3人回答这个问题已知这6人中,甲班级有4人可以正确回答这道题目,而乙班级6人中能正确回答这道题目的概率每人均为,甲、乙两班级每个人对问题的回答都是相互独立,互不影响的.
(1)求甲、乙两个班级抽取的6人都能正确回答的概率;
(2)分别求甲、乙两个班级能正确回答题目人数的期望和方差、,并由此分析由哪个班级代表学校参加大赛更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】出版商为了解某科普书一个季度的销售量(单位:千本)和利润(单位:元/本)之间的关系,对近年来几次调价之后的季销售量进行统计分析,得到如下的10组数据.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2.4 | 3.1 | 4.6 | 5.3 | 6.4 | 7.1 | 7.8 | 8.8 | 9.5 | 10 | |
18.1 | 14.1 | 9.1 | 7.1 | 4.8 | 3.8 | 3.2 | 2.3 | 2.1 | 1.4 |
根据上述数据画出如图所示的散点图:
(1)根据图中所示的散点图判断和哪个更适宜作为销售量关于利润的回归方程类型?(给出判断即可,不需要说明理由)
(2)根据(1)中的判断结果及参考数据,求出关于的回归方程;
(3)根据回归方程预测当每本书的利润为10.5元时的季销售量.
参考公式及参考数据:
①对于一组数据,其回归直线的斜率和截距的公式分别为.
②参考数据:
6.50 | 6.60 | 1.75 | 82.50 | 2.70 |
表中.另:.计算时,所有的小数都精确到0.01.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,动点与两定点,连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,过原点且斜率为的直线与曲线交于两点(点在第一象限),求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据(),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是( )
A.与具有正线性相关关系
B.回归直线过样本的中心点
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是且边长为的菱形,侧面为正三角形,其所在平面垂直于底面.
(1)若为边的中点,求证:平面.
(2)求证:.
(3)若为边的中点,能否在上找出一点,使平面 平面?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com