精英家教网 > 高中数学 > 题目详情
8.已知奇函数f(x)满足f(x+2)=f(x),当x∈(0,1)时,函数f(x)=2x,则$f({log_{\frac{1}{2}}}23)$=(  )
A.$-\frac{16}{23}$B.$-\frac{23}{16}$C.$\frac{16}{23}$D.$\frac{23}{16}$

分析 由函数是奇函数得到f(-x)=-f(x)和f(x+2)=f(x)把则$f({log_{\frac{1}{2}}}23)$进行变形得到-f($lo{g}_{2}\frac{23}{16}$),由$lo{g}_{2}\frac{23}{16}$∈(0,1)满足f(x)=2x,求出即可.

解答 解:根据对数函数的图象可知 $f({log_{\frac{1}{2}}}23)$<0,且$f({log_{\frac{1}{2}}}23)$=-log223
奇函数f(x)满足f(x+2)=f(x)和f(-x)=-f(x)
则$f({log_{\frac{1}{2}}}23)$=f(-log223)=-f(log223)=-f(log223-4)=-f($lo{g}_{2}\frac{23}{16}$),
因为$lo{g}_{2}\frac{23}{16}$∈(0,1)
∴-f($lo{g}_{2}\frac{23}{16}$)=$-{2}^{lo{g}_{2}\frac{23}{16}}$=$-\frac{23}{16}$,
故选:B

点评 考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)在图中作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数、中位数(保留2位小数);
(3)根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在半圆上.
(1)若这个梯形上底为CD=2a,求它的腰长x;
(2)求出这个梯形的周长y关于腰长x的函数解析式,并指出它的定义域;
(3)求这个梯形周长的最大值,并求出当它最大时,梯形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{y^2}{5}+{x^2}=1$与抛物线x2=ay有相同的焦点F,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在二分法求方程f(x)=0在[0,4]上的近似解时,最多经过12次计算精确度可以达到0.001.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈[0,2π],sinx≤1,则(  )
A.¬p:?x∈[0,2π],sinx≥1B.¬p:?x∈[-2π,0],sinx>1
C.¬p:?x∈[0,2π],sinx>1D.¬p:?x∈[-2π,0],sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足a1=1,nan+1=(n+1)an+(n+1)n(n∈N+),
(1)令cn=$\frac{a_n}{n}$,证明{cn}是等差数列,并求an
(2)令bn=$\frac{1}{{\sqrt{a_n}\sqrt{{a_{n+1}}}}}$,求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数$z=\frac{3}{1+i}$,则|z-1|为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案