【题目】正整数的所有约数之和用表示,(比如).试答下列各问:
(1)证明:如果和互质,那么;
(2)当是的约数(),且.试证是质数.其次,如果是正整数,是质数,试证也是质数;
(3)设(为正整数,为奇数),且.试证存在质数,使得.
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率;
(2)估计本次考试的中位数;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值)
(附,,其中,为样本均值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数是定义在上的奇函数,且当时,.
(Ⅰ)若,求函数的解析式;
(Ⅱ)若,方程至少有两个不等的解,求的取值集合;
(Ⅲ)若函数为上的单调减函数,
①求的取值范围;
②若不等式成立,求实数的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在上的函数、和,满足,且对任意实数、(),恒有成立.
⑴试写 出一组满足条件的具体的和,使为增函数,为减函数,但为增函数.
⑵判断下列两个命题的真假,并说明理由.
命题1):若为增函数,则为增函数;
命题2):若为增函数,则为增函数.
⑶已知,写出一组满足条件的具体的和,且为非常值函数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com