精英家教网 > 高中数学 > 题目详情

(本小题满分18分)设数列{}的前项和为,且满足=2-,(=1,2,3,…)

(Ⅰ)求数列{}的通项公式;

(Ⅱ)若数列{}满足=1,且,求数列{}的通项公式;

(Ⅲ),求的前项和

 

【答案】

(Ⅰ) an=(n∈N*); (Ⅱ) bn=3-2()n-; (Ⅲ)  。

【解析】

试题分析:(Ⅰ)∵n=1时,a1+S1=a1+a1=2

∴a1=1 

∵Sn=2-an即an+Sn=2 ∴an+1+Sn+1=2

两式相减:an+1-an+Sn+1-Sn=0

即an+1-an+an+1=0,故有2an+1=an

∵an≠0 ∴(n∈N*)

所以,数列{an}为首项a1=1,公比为的等比数列.an=(n∈N*)

(Ⅱ)∵bn+1=bn+an(n=1,2,3,…)

∴bn+1-bn=()n-1

得b2-b1=1

b3-b2=

b4-b3=()2

……

bn-bn-1=()n-2(n=2,3,…)

将这n-1个等式相加,得

bn-b1=1+

又∵b1=1,∴bn=3-2()n-1(n=1,2,3,…)  

(3)

所以

考点:数列通项公式的求法;数列前n项和的求法。

点评:若已知递推公式为的形式求通项公式常用累加法。

注:①若是关于n的一次函数,累加后可转化为等差数列求和;

②若是关于n的二次函数,累加后可分组求和;

是关于n的指数函数,累加后可转化为等比数列求和;

是关于n的分式函数,累加后可裂项求和。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分18分)如图,将圆分成个扇形区域,用3种不同颜色给每一个扇形区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求

(Ⅰ)

(Ⅱ)的关系式;

(Ⅲ)数列的通项公式,并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分18分)已知数列{an}、{bn}、{cn}的通项公式满足bn=an+1-an,cn=bn+1-bn(n∈N*?),若数列{bn}是一个非零常数列,则称数列{an}是一阶等差数列;若数列{cn}是一个非零常数列,则称数列{an}是二阶等差数列?(1)试写出满足条件a=1,b1=1,cn=1(n∈N*?)的二阶等差数列{an}的前五项;(2)求满足条件(1)的二阶等差数列{an}的通项公式an;(3)若数列{an}首项a=2,且满足cn-bn+1+3an=-2n+1(n∈N*?),求数列{an}的通项公式

查看答案和解析>>

科目:高中数学 来源:2015届广东汕头达濠中学高一上期末数学试卷(解析版) 题型:解答题

(本小题满分18分)知函数的图象的一部分如下图所示。

(1)求函数的解析式;

(2

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题

(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

(文)已知数列中,

(1)求证数列不是等比数列,并求该数列的通项公式;

(2)求数列的前项和

(3)设数列的前项和为,若对任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题

本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设函数是定义域为R的奇函数.

(1)求k值;

(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

 

 

查看答案和解析>>

同步练习册答案