精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1,求函数的单调区间;

2若对任意的上恒成立,求实数的取值范围.

【答案】(1)时,以单调递增,单调递减;(时,单调递增,单调递减;(2) .

【解析】

1 求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;2求出的最大值,问题等价于,即,对恒成立,求出函数的导数,通过讨论的范围,结合函数的单调性,可筛选出符合题意的的范围.

1由题意,

.

时,,令,得

所以单调递增,单调递减;

(时,,令

,得,所以,单调递增,单调递减.

2

时,单调递增,则

恒成立等价于

,对恒成立.

时,,此时

不合题意,舍去 .

时,令

,其中

,则在区间上单调递增.

时,,所以对

上单调递增,故对任意

即不等式上恒成立,满足题意

时,由在区间上单调递增,

所以存在唯一的使得,且时,

从而时,,所以在区间上单调递减,

时,,即,不符合题意.

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:

根据该折线图可知,下列说法错误的是( )

A. 该超市2018年的12个月中的7月份的收益最高

B. 该超市2018年的12个月中的4月份的收益最低

C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益

D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和菱形所在的平面相互垂直,,的中点.

(1)求证:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性.

(2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式:

方式一:周一到周五每天培训1小时,周日测试

方式二:周六一天培训4小时,周日测试

公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?

在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求二面角A-MA1-N的正弦值.

查看答案和解析>>

同步练习册答案