【题目】已知函数.
1若,求函数的单调区间;
2若对任意的,在上恒成立,求实数的取值范围.
【答案】(1)当时,以在单调递增,单调递减;(当时,在单调递增,,单调递减;(2) .
【解析】
1 求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;2求出的最大值,问题等价于,即,对恒成立,求出函数的导数,通过讨论的范围,结合函数的单调性,可筛选出符合题意的的范围.
1由题意,
.
当时,,令得;,得,
所以在单调递增,单调递减;
(当时,,令得;
令,得或,所以,在单调递增,,单调递减.
2令,,
当时,,单调递增,则,
则对恒成立等价于,
即,对恒成立.
当时,,,,此时,
不合题意,舍去 .
当时,令,,
则,其中,,
令,,则在区间上单调递增.
当时,,所以对,,
则在上单调递增,故对任意,,
即不等式在上恒成立,满足题意
当时,由,及在区间上单调递增,
所以存在唯一的使得,且时,.
从而时,,所以在区间上单调递减,
则时,,即,不符合题意.
综上所述,.
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在四棱锥中,面,,,,,,,为的中点。
(1)求证:面;
(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |
用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com