精英家教网 > 高中数学 > 题目详情

【题目】选修:坐标系与参数方程

在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为

(1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时点的直角坐标.

【答案】(1) ;(2)

【解析】

试题分析: (1)利用 将曲线的参数方程化为普通方程为,利用将曲线的极坐标方程化为直角坐标方程为.(2)根据直线与圆位置关系可得取得最小值为圆心到直线距离减去半径,此时为过圆心且垂直于直线的直线与圆的交点(靠近直线).

试题解析: (1)的普通方程为的直角坐标方程为

(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为的距离 .

当且仅当时,取得最小值,最小值为,此时的直角坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数有两个零点,求满足条件的最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下五个命题中:

,则的取值范围是

不等式,对一切x恒成立,则实数的取值范围为

若椭圆的两焦点为,且弦点,则的周长为16

若常数成等差数列,则成等比数列;

⑤数列的前项和为=+21,则这个数列一定是等差数列.

所有正确命题的序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(Ⅰ)令,求的单调区间;

(Ⅱ)当时,直线的图像有两个交点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若是曲线上的两点,.问: 是否存在,使得直线的斜率等于?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于两点,为坐标原点,直线轴相交于点,且.

1)求证:

2)求点的横坐标;

3)过点分别作抛物线的切线,两条切线交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是棱长为1的正方体ABCDA1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面.

(1)求棱锥的体积;

(2)求证:平面平面

(3)在线段上是否存在一点,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率

(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入心理社的概率

(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数不低于1分的概率.

查看答案和解析>>

同步练习册答案