精英家教网 > 高中数学 > 题目详情
精英家教网如图已知A、B分别为∠POQ的边OP、OQ上的动点且∠POQ=60°,|
OA
-
OB
|=6

(1)若
OA
OB
=12,求|
OA
|,|
OB
|

(2)求
OA
OB
的最大值.
分析:(1)由向量的模|
OA
-
OB
|=6
及数量积推出模的平方和,解方程组,求得结论.
(2)利用数量积的表达式,及
OA
2
-2
OA
OB
+
OB
2
=36
,利用基本不等式求其最值.
解答:解:(1)∵|
OA
-
OB
|=6

OA
2
-2
OA
OB
+
OB
2
=36

又∵
OA
OB
=12

OA
2
+
OB
2
=60,|
OA
|•|
OB
|=24

OA
=2
3
OB
|=4
3
OA
|=4
3
OB
|=2
3


(2)
OA
OB
=
OA
|•|
OB
|cos∠POQ=
1
2
|
OA
|•|
OB
|

又∵
OA
2
-2
OA
OB
+
OB
2
=36

OA
2
-|
OA
|•|
OB
|+
OB
2
=36

OA
2
+
OB
2
≥2  |
OA
|•|
OB
|

|
OA
|•|
OB
|
≤36当且仅当|
OA
|=|
OB
|=6
时取等号
OA
OB
的最大值为18
点评:本题考查向量的数量积,向量的模,基本不等式等知识,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知A,B 分别为曲线C:
x2
a2
+y2=1(y≥0,a>0)与x轴的左、右两个交点,直线l过点B,且与x轴垂直,S为l上异于点B的一点,连接AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧
AB
的三等分点,试求出点S的坐标;
(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知A,B分别为椭圆
x2
a2
+
y2
b2
=1(a>b>)
的右顶点和上顶点,直线 l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE?kDF等于(  )
A、±
a2
b2
B、±
a2-b2
a2
C、±
b2
a2
D、±
a2-b2
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABC是直线m上的三点,且|AB|=|BC|=6,⊙O'切直线m于点A,又过BC作⊙O'异于m的两切线,切点分别为DE,设两切线交于点P

(1)求点P的轨迹方程;

(2)经过点C的直线l与点P的轨迹交于MN两点,且点C所成的比等于2∶3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南通市如皋市高三1月抽考数学试卷(理科)(解析版) 题型:解答题

如图已知A、B分别为∠POQ的边OP、OQ上的动点且∠POQ=60°,
(1)若
(2)求的最大值.

查看答案和解析>>

同步练习册答案