精英家教网 > 高中数学 > 题目详情

函数的图象记为E.过点作曲线E的切线,这样的切线有且仅有两条,求的值.

解析试题分析:通过对函数f(x)求导,写出切线方程邴代茹A点坐标,然后整理求出极值点,最后得到结果.
.           1分
设切点为,则切线方程为,      2分
将点代入得
,可化为.  4分
,
的极值点为.          6分
作曲线的切线,这样的切线有且仅有两条,
              8分
考点:函数的导数、极值的概念;导数的几何意义及求切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处取极值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数在区间内的最大值;
(2)当时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若曲线在点处与直线相切,求a,b的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的导函数的简图,它与轴的交点是(0,0)和(1,0),


(1)求的解析式及的极大值.
(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)是否存在实数,使得函数上单调递增?若存在,求出的值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为,求函数的极大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若对任意不等式恒成立,求实数a的取值范围:
(3)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线方程为
(1)求的值;
(2)如果当,且时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数,当时,讨论的单调性;
(2)若函数处取得极小值,求的取值范围.

查看答案和解析>>

同步练习册答案