精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知点A ( 
1
2
 , 0 )
,点B在直线l:x=-
1
2
上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.
分析:(1)设点M的坐标为(x,y),由题设知,|MB|=|MA|.根据抛物线的定义可知点M的轨迹为抛物线,根据焦点和准线方程,则可得抛物线方程.
(2)设P(x0,y0),R(0,b),N(0,c),且b>c,则直线PR的方程可得,由题设知,圆心(1,0)到直线PR的距离为1,把x0,y0代入化简整理可得(x0-2)b2+2y0b-x0=0,同理可得(x0-2)c2+2y0c-x0=0,进而可知b,c为方程(x0-2)x2+2y0x-x0=0的两根,根据求根公式,可求得b-c,进而可得△PRN的面积的表达式,根据均值不等式可知当当x0=4时面积最小,进而求得点P的坐标.
解答:解:(Ⅰ)设点M的坐标为(x,y),由题设知,|MB|=|MA|.
所以动点M的轨迹E是以A ( 
1
2
 , 0 )
为焦点,
l:x=-
1
2
为准线的抛物线,其方程为y2=2x;
(Ⅱ)设P(x0,y0),R(0,b),N(0,c),且b>c,
故直线PR的方程为(y0-b)x-x0y+x0b=0.
由题设知,圆心(1,0)到直线PR的距离为1,
y0-b+x0b |
y0-b )2+x02
=1

注意到x0>2,化简上式,得(x0-2)b2+2y0b-x0=0,
同理可得(x0-2)c2+2y0c-x0=0.
由上可知,b,c为方程(x0-2)x2+2y0x-x0=0的两根,
根据求根公式,可得b-c=
4
x
2
0
+4
y
2
0
-8x0
x0-2
=
2x0
x0-2

故△PRN的面积为
S=
1
2
( b-c )x0=
x
2
0
x0-2
=( x0-2 )+
4
x0-2
+4≥2
x0-2 )•
4
x0-2
+4=8

等号当且仅当x0=4时成立.此时点P的坐标为( 4 , 2
2
 )
( 4 , -2
2
 )

综上所述,当点P的坐标为( 4 , 2
2
 )
( 4 , -2
2
 )
时,△PRN的面积取最小值8.
点评:本题主要考查了抛物线的标准方程和直线与抛物线的关系.直线与圆锥曲线的问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长、弦中点问题,垂直问题,对称问题.与圆锥曲线性质有关的量的取值范围等是近几年命题的新趋向.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案