分析 复数z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$=1+i.
(1)利用复数的运算法则与纯虚数的定义即可得出.
(2)复数z1与z在复平面上所对应的点关于虚轴对称,可得其实部互为相反数,而虚部相等.
(3)利用复数的运算法则、复数相等、模的计算公式即可得出.
解答 解:复数z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$=$\frac{-2i+3+3i}{2-i}$=$\frac{3+i}{2-i}$=$\frac{(3+i)(2+i)}{(2-i)(2+i)}$=$\frac{5+5i}{5}$=1+i.
(1)z•(m+2i)=(1+i)(m+2i)=m-2+(2+m)i为纯虚数,∴m-2=0,2+m≠0,
解得m=2.
(2)∵复数z1与z在复平面上所对应的点关于虚轴对称,
∴z1=-1+i,
∴z1的实部为-1.
(3)复数z2=a+bi(a,b∈R),且z2+az+b=1-i,
∴2i+a(1+i)+b=1-i,
即a+b+(2+a)i=1-i,
∴a+b=1,2+a=-1.
解得a=-3,b=4.
∴|z2|=$\sqrt{(-3)^{2}+{4}^{2}}$=5.
点评 本题考查了复数的运算法则、复数相等、模的计算公式、纯虚数的定义、几何意义等基础知识,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{20}+\frac{y^2}{25}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{5}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{20}=1$ | D. | $\frac{x^2}{5}+\frac{y^2}{25}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | $-\frac{8}{3}$ | C. | 2 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com