精英家教网 > 高中数学 > 题目详情
12.一个几何体的三视图如图所示,其中正视图和侧视图都是边长为2的正三角形,那么这个几何体的体积为(  )
A.$\frac{\sqrt{3}}{3}π$B.$\frac{\sqrt{2}}{2}π$C.$\frac{\sqrt{2}}{4}π$D.$\frac{π}{4}$

分析 根据几何体的三视图,得出该几何体是底面半径为1,母线长为2的圆锥,由此求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是底面半径为1,母线长为2的圆锥,
所以该圆锥的体积为
V=$\frac{1}{3}$×π×12×$\sqrt{{2}^{2}-{1}^{2}}$=$\frac{\sqrt{3}}{3}$π.
故选:A.

点评 本题考查了空间几何体三视图的应用问题,也考查了圆锥的体积计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.廉华超市每月按出厂价3元/瓶购进一种饮料,根据以前的统计数据,若零售价定为4元/瓶,每月可销售400瓶;每瓶售价每降低0.05元,则可多销售40瓶,在每个月的进货量当月售完的前提下,请你给该超市设计一个方案:售价应定为多少元和从工厂购进多少瓶时,才可获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD的底面是直角梯形,PA⊥面ABCD,∠BAD=∠ABC=90°,AD=2,BC=1,AB=$\sqrt{2}$,PA=4.点M,N分别是PA,PD中点,平面MNC交PA于Q.
(1)试确定Q点的位置;
(2)求平面MNC与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从某班成员分别为3人、3人和4人的三个学习小组中选派4人组成一个环保宣传小组,则每个学习小组都至少有1人的选派方法种数是(  )
A.130B.128C.126D.124

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定积分${∫}_{1}^{e}$($\frac{1}{x}$+2)dx的值为(  )
A.2e+1B.2e-1C.e-2D.2e-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知(x2+2x+1)(1+x)4=a0+a1x+a2x2+…+a7x7,则a1+2a2+3a3+…+7a7=192.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{1}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N+),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与i的夹角,则$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+…+$\frac{cos{θ}_{9}}{sin{θ}_{9}}$=$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设所有方程可以写成(x-1)sinα-(y-2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是②③④;
①直线l的倾斜角为α;
②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;
③存在定圆C,使得对任意l∈L都有直线l与圆C相交;
④任意l1∈L,必存在唯一l2∈L,使得l1∥l2
⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知2a=3b=6c,k∈Z,不等式$\frac{a+b}{c}$>k恒成立,则整数k的最大值为(  )
A.6B.5C.3D.4

查看答案和解析>>

同步练习册答案