精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令cn=
bn-4
bn
(n∈N*),在(2)的条件下,求数列{cn}的“积异号数”.
(1)由题意可得,当n≥2时,有
an+1=2Sn+1
an=2Sn-1+1
,(1分)
两式相减,得 an+1 -an =2an,即an+1=3an (n≥2),(2分)
所以,当n≥2时,{an}是等比数列,要使n≥1时{an}是等比数列,
则只需
a2
a1
=
2t+1
t
=3
,从而得出t=1.(4分)
(2)由(1)得,等比数列{an}的首项为a1=1,公比q=3,∴an=3n-1.(5分)
bn=nan=n•3n-1,(6分)
Tn=1×30+2×31+3×32+…+(n-1)•3n-2+n•3n-1,①(7分)
上式两边乘以3得3Tn=1×31+2×32+3×33+…+(n-1)•3n-1+n•3n②,(8分)
①-②得-2Tn=30+31+32+…+3n-1-n•3n,(9分)
Tn=
2n-1
4
3n+
1
4
.(10分)
(3)由(2)知bn=n•3n-1,∵cn=1-
4
bn

c1=1-
4
1
=-3
c2=1-
4
2×3
=
1
3
,∴c1c2=-1<0.(11分)
cn+1-cn=
4
bn
-
4
bn+1
=
4(2n+3)
n(n+1)•3n
>0
,∴数列{cn}递增.(12分)
c2=
1
3
>0
,得当n≥2时,cn>0.(13分)
∴数列{cn}的“积异号数”为1.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案