精英家教网 > 高中数学 > 题目详情

【题目】人口平均预期寿命是综合反映人们健康水平的基本指标.年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.下图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是(

A.男性的平均预期寿命逐渐延长

B.女性的平均预期寿命逐渐延长

C.男性的平均预期寿命延长幅度略高于女性

D.女性的平均预期寿命延长幅度略高于男性

【答案】C

【解析】

从图形中的数据变化可判断AB选项的正误;计算出男性和女性平均预期寿命延长幅度,可判断CD选项的正误,综合可得出结论.

由图形可知,男性的平均预期寿命逐渐延长,女性的平均预期寿命也在逐渐延长,AB选项均正确;

年到年,男性的平均预期寿命的增幅为,女性的平均预期寿命的增幅为

所以,女性的平均预期寿命延长幅度略高于男性,C选项错误,D选项正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的一个焦点与抛物线的焦点相同.直线过点,且与椭圆相交于两点.

1)求椭圆的方程;

2)若直线的一个方向向量为,求的面积(其中为坐标原点);

3)试问:在轴上是否存在点,使得为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的短轴长为2,离心率为,左顶点为A,过点A的直线lC交于另一个点M,且与直线xt交于点N

1)求椭圆C的方程;

2)是否存在实数t,使得为定值?若存在,求实数t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线是过点的动直线,当与圆相切时,同时也和抛物线相切.

1)求抛物线的方程;

2)直线与抛物线交于不同的两点,与圆交于不同的两点AB面积为面积为,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在同一个球的上,,,.若四面体体积的最大值为,则这个球的表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单位圆Ox2+y21上任取一点Pxy),圆Ox轴正向的交点是A,设将OA绕原点O旋转到OP所成的角为θ,记xy关于θ的表达式分别为xfθ),ygθ),则下列说法正确的是(  )

A.xfθ)是偶函数,ygθ)是奇函数

B.xfθ)在为增函数,ygθ)在为减函数

C.fθ+gθ≥1对于恒成立

D.函数t2fθ+g2θ)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和Sn满足4Snan2+2annN*.bn=(﹣1nanan+1Tn为数列{bn}的前n项和,则T2n_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

同步练习册答案