精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.
a=2,或a=-1

试题分析:因为函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,通过配方可知函数的对称轴为x=a,且知该二次函数的开口向下,按分类讨论,结合图象就可用a将函数在[0,1]的最大值表示出来,再令其等于2就可解得a值.
试题解析:由f(x)=-x2+2ax+1-a=知其对称轴为:,又因为x∈[0,1];
(1)当时,函数在[0,1]上是减函数,所以
(2)当时,函数在[0,1]上是增函数,所以
(3)当时,函数在[0,1]上的最大值为故舍去.
综上可知:a=2,或a=-1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数,当x>0时,,且对任意的ab∈R,有fa+b)=fa)·fb).
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有fx)>0;
(3)求证:fx)是R上的增函数;
(4)若fx)·f(2xx2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=ax(a>0且a≠1)对于任意实数x、y都有(  )
A.f(xy)=f(x)•(y)B.f(xy)=f(x)+(y)C.f(x+y)=f(x)f(y)D.f(x+y)=f(x)+f(y)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,10)B.(5,6)C.(10,12)D.(20,24)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若命题“恒成立”是真命题,则实数a的取值范围是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在实数x∈[2,4],使不等式x2-2x-2-m<0成立,则m的取值范围为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2014·孝感模拟)已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函数f(x)的最小值.
(2)对于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)的定义域为D,若存在非零实数n使得对于任意xM(MD),有xnD,且f(xn)≥f(x),则称f(x)为M上的n高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是________.

查看答案和解析>>

同步练习册答案