精英家教网 > 高中数学 > 题目详情
已知命题p:A={x|10+3x-x2≥0},命题q:B={x|x2-2x+1-m2≤0(m>0)}若非p是非q的充分不必要条件,求实数m的取值范围.
分析:根据一元二次方程的解法,分别求出集合A和B,若非p是非q的充分不必要条件,则q 是p的充分不必要条件,从而求出a的范围;
解答:解:∵命题p:A={x|10+3x-x2≥0},命题q:B={x|x2-2x+1-m2≤0(m>0)}
由10+3x-x2≥0,得-2≤x≤5…(3分)
由x2-2x+1-m2≤0    (m>0)
得1-m≤x≤1+m…(6分)∴1+m≥1-m,∴m≥0
因为 非p是非q的充分不必要条件
所以q 是p的充分不必要条件…(9分)
所以
-2≤1-m
1+m≤5

得m≤3…(12分)∵m>0,
∴m的范围为:0<m≤3
点评:本题以集合的定义与子集的性质为载体,考查了必要条件、充分条件与充要条件的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:A={x||x-a|<4},命题q:B={x|(x-2)(3-x)>0},若p是q的必要条件,则实数a的取值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:A={x|(x+2)(x-10)≤0}.命题q:B={x|1-m≤x≤1+m(m>0)}
(1)求不等式(x+2)(x-10)≤0的解集
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:A={x|
ax-4
x-2
>0}
,命题q:B={x|m<x<2m+1}.
(1)若a≥2,求关于x的不等式
ax-4
x-2
>0
的解集A;
(2)若a=-2且¬p是¬q的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题p:A={x|(x+2)(x-10)≤0}.命题q:B={x|1-m≤x≤1+m(m>0)}
(1)求不等式(x+2)(x-10)≤0的解集
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案