精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣mlnx在[2,+∞)上单调递增,则实数m的取值范围为

【答案】(﹣∞,8]
【解析】解:对f(x)求导后:f'(x)=2x﹣
函数f(x)=x2﹣mlnx在[2,+∞)上单调递增 即可转化为:f'(x)在[2,+∞)上恒有f'(x)≥0;
∴2x﹣ ≥02x2≥m;
故u=2x2 在[2,+∞)上的最小值为u(2)=8;
所以,m的取值范围为(﹣∞,8];
所以答案是:(﹣∞,8].
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)过点( ,1),离心率为 ,直线l:y=k(x+1)与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)在x轴上是否存在点M,使 + 是与k无关的常数?若存在,求出点M的坐标,并求出此常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是单调递增的函数是(
A.y=﹣
B.y=3x﹣3x
C.y=x|x|
D.y=x3﹣x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈(0, ).
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体户计划经销AB两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销AB商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投资额为零时收益为零.

(1)ab的值;

(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中优秀的人数是30人.

(1)请完成上面的列联表;

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;

参考公式与临界值表 .

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).

(1)求的值; (2)若c=a,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.
(1)求椭圆C的方程;
(2)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.

(1)a=1,p∧q为真,求实数x的取值范围;

(2)pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案