精英家教网 > 高中数学 > 题目详情
如图,在空间直角坐标系中有直三棱柱ABC­A1B1C1CACC1=2CB,则直线BC1与直线AB1夹角的余弦值为(  ).
A.B.C.D.
A
CA=2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈〉=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角A­BD­C为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC­A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1AMCC1的中点.

(1)求证:A1BAM
(2)求二面角B­AM­C的平面角的大小..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的空间直角坐标系O-xyz中,原点O是BC的中点,A点坐标为,D点在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.

(Ⅰ)求D点坐标;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1),等腰直角三角形的底边,点在线段上,,现将沿折起到的位置(如图(2)).

(Ⅰ)求证:
(Ⅱ)若,直线与平面所成的角为,求长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,二面角A1-BD-C1的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四面体PABC中,PAPBPC两两垂直,设PAPBPCa,则点P到平面ABC的距离为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形形状为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正六边形中,(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案