精英家教网 > 高中数学 > 题目详情

【题目】已知数列为等差数列,,数列的前项和为,且有.

1)求的通项公式;

2)若,求使成立的的最小值.

【答案】1;(2.

【解析】

1)设等差数列的公差为,根据题意列方程组解出的值,利用等差数列的通项公式可求得的通项公式,令可求得的值,令,由得出,两式作差可推导出数列为等比数列,确定该数列的首项和公比,可求得数列的通项公式;

2)求得,利用错位相减法求得,由不等式得出,解此不等式即可得出正整数的最小值.

1)设等差数列的公差为,由题意可得,解得

.

由于数列的前项和为,且有.

时,,解得

时,由可得

上述两式相减得,可得

所以,数列是以为首项,以为公比的等比数列,

2

上式下式得

,即,解得.

因此,满足不等式成立的的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对车辆状况好评

对车辆状况不满意

合计

(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?

(2)为了回馈用户,公司通过向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过转赠给好友.某用户共获得了张骑行券,其中只有张是一元券.现该用户从这张骑行券中随机选取张转赠给好友,求选取的张中至少有张是一元券的概率.

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为,粗实线围城的各区域上分别标有数字的四色地图符合四色定理,区域和区域标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为的区域的概率所有可能值中,最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形所在平面与等腰梯形所在平面互相垂直,已知.

(1)求证:平面平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:)随时间(,单位:小时)的大致变化曲线,若该曲线近似的满足函数关系.

(1)求函数的表达式;

(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有两个零点,求的取值范围;

(Ⅱ)证明:当时,关于的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)

表中.

(1)根据散点图判断,哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立关于的回归方程;

(3)若该产品的日销售量(件)与时间的函数关系为),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.

成绩优秀

成绩不够优秀

总计

选修生涯规划课

15

10

25

不选修生涯规划课

6

19

25

总计

21

29

50

(Ⅰ)根据列联表运用独立性检验的思想方法能否有的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;

(Ⅱ)如果从全校选修生涯规划课的学生中随机地抽取3名学生,求抽到成绩不够优秀的学生人数的分布列和数学期望(将频率当作概率计算).

参考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

参考公式,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中,分别为棱的中点,则下列说正确的是(

A.平面B.平面

C.异面直线所成角为90°D.平面截正方体所得截面为等腰梯形

查看答案和解析>>

同步练习册答案