精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

【答案】解:(Ⅰ)因为向量 =(a, b)与 =(cosA,sinB)平行, 所以asinB﹣ =0,由正弦定理可知:sinAsinB﹣ sinBcosA=0,因为sinB≠0,
所以tanA= ,可得A=
(Ⅱ)a= ,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,
△ABC的面积为: =
【解析】(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a= ,b=2,通过余弦定理求出c,然后求解△ABC的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣a,g(x)=a|x|,a∈R.
(1)设F(x)=f(x)﹣g(x). ①若a= ,求函数y=F(x)的零点;
②若函数y=F(x)存在零点,求a的取值范围.
(2)设h(x)=f(x)+g(x),x∈[﹣2,2],若对任意x1 , x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.

(1)求证:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为M.
(1)求M;
(2)当x∈M时,求 +1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}和等比数列{bn}中.已知a1=b1=1.a2=b2 . a6=b3
(1)求等差数列{an}的通项公式an和等比数列{bn}的通项公式bn
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈[ ],β∈[﹣ ,0],且(α﹣ 3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin( +β)的值为(
A.0
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别为CD、DD1的中点,则异面直线EF与A1C1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点A(1,4),B(3,2),且圆心在x轴上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案