精英家教网 > 高中数学 > 题目详情
16.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(其中a为常数).
(1)求f(x)的单调减区间;
(2)求出使f(x)取得最大值时x的集合;
(3)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为1,求a的值.

分析 (1)解2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可得f(x)的单调减区间;
(2)当2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$时,函数取最大值,可得x的集合;
(3)由x∈[0,$\frac{π}{2}$]可得当2x+$\frac{π}{6}$=$\frac{7π}{6}$函数取最小值,解a的方程可得.

解答 解:(1)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
∴f(x)的单调减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z;
(2)当2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$时,函数取最大值a+3,
此时x的集合为{x|x=kπ+$\frac{π}{6}$,k∈Z};
(3)∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴当2x+$\frac{π}{6}$=$\frac{7π}{6}$,即x=$\frac{π}{2}$时sin(2x+$\frac{π}{6}$)取最小值-$\frac{1}{2}$,
此时f(x)取最小值为2×(-$\frac{1}{2}$)+a+1=1,解得a=0

点评 本题考查正弦函数的单调性,涉及三角函数的最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知圆(x-a)2+(y-b)2=r2(r>0)与x轴,y轴都相切.则a、b、r应满足条件(  )
A.a=r,b=rB.|a|=|b|=rC.a=rD.b=r

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设Sn是等比数列{an}的前n项和,an>0,若S6-2S3=5,则S9-S6的最小值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知三条直线l1:x+3y-3=0,l2:x-y+1=0,l3:2x+y+m=0交于同一点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(3π-α)=-2sin($\frac{π}{2}$+α),则sinα•cosα等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{5}{4}$,且双曲线C的焦点到它的一条渐近线的距离为3,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若α为锐角,且sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,则sinα的值为$\frac{\sqrt{2}+\sqrt{30}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}}-\frac{1}{x},x≥1}\\{2x+2,x<1}\end{array}\right.$,则f(f(0))=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{{e}^{x}}{{x}^{2}}$+k($\frac{2}{x}$+lnx)(k为常数).
(1)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当k≥0时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

同步练习册答案