精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系中,直线l过点P(2,$\sqrt{3}$)且倾斜角为α,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cos(θ-$\frac{π}{3}$),直线l与曲线C相交于A,B两点;
(1)求曲线C的直角坐标方程;
(2)若$|AB|=\sqrt{13}$,求直线l的倾斜角α的值.

分析 (1)由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的直角坐标方程.
(2)设出直线方程,求出圆心到直线的距离,由已知求出直线的斜率,由此能求出直线l的倾斜角α的值.

解答 解:(1)∵$ρ=4cos(θ-\frac{π}{3})$,∴$ρ=4(cosθcos\frac{π}{3}+sinθsin\frac{π}{3})=2(cosθ+\sqrt{3}sinθ)$…(3分)
∴${ρ^2}=2(ρcosθ+\sqrt{3}ρsinθ)$,∴${x^2}+{y^2}=2x+2\sqrt{3}y$,
∴曲线C的直角坐标方程为${(x-1)^2}+{(y-\sqrt{3})^2}=4$.…(5分)
(2)当α=900时,直线l:x=2,∴$|AB|=2\sqrt{3}≠\sqrt{13}$,∴α=900舍  …(6分)
当α≠900时,设tanα=k,则$l:y-\sqrt{3}=k(x-2),即kx-y-2k+\sqrt{3}=0$,
∴圆心$C(1,\sqrt{3})$到直线$kx-y-2k+\sqrt{3}=0$的距离$d=\frac{{|k-\sqrt{3}-2k+\sqrt{3}|}}{{\sqrt{{k^2}+1}}}=\frac{|k|}{{\sqrt{{k^2}+1}}}$
由${d^2}+{({\frac{|AB|}{2}})^2}=4得:\frac{k^2}{{{k^2}+1}}+\frac{13}{4}=4,解得:k=±\sqrt{3}$,
∴$tanα=±\sqrt{3}$,∵α∈(0,π),∴$α=\frac{π}{3}或\frac{2π}{3}$.…(10分)

点评 本题考查曲线的直角坐标的求法,考查直线的倾斜角的求法,是基础题,解题时要注意极坐标方程、直角坐标方程互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=log2(3x2-mx+2)在区间[1,+∞)上单调递增,则实数m的取值范围是(-∞,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合.直线l的参数方程为$\left\{\begin{array}{l}{2+tcosα}\\{1+tsinα}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4cos θ+2sin θ.
(1)写出曲线C的直角坐标方程,并指明C是什么曲线;
(2)设直线l与曲线C相交于P,Q两点,求证|PQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求证:平面ABC1⊥平面A1ACC1
(2)设D是线段BB1的中点,求三棱锥D-ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.斜三棱柱一个侧面面积为5$\sqrt{3}$,这个侧面与所对棱的距离是2$\sqrt{3}$,此棱柱的体积为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)若正方体的棱长为1,求三棱锥B1-A1BE的体积;
(2)在棱C1D1上是否存在一点F,使B1F∥面A1BE?若存在,试确定点F的位置,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定正确的个数是(  )
①$f({\frac{1}{k}})>0$  ②f(k)>k2 ③$f({\frac{1}{k-1}})>\frac{1}{k-1}$  ④$f({\frac{1}{1-k}})<\frac{2k-1}{1-k}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线y2=5x上的两点A,B到焦点的距离之和是10,则线段AB的中点到y轴的距离是$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,则输出的结果是(  )
A.12B.60C.360D.2520

查看答案和解析>>

同步练习册答案