精英家教网 > 高中数学 > 题目详情
设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:+
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
【答案】分析:(1)由题意知数列{an}的通项是关于x的不等式的解集中整数的个数,题目首先应该解不等式,从不等式的解集中得到整数的个数,得到数列的通项,用等差数列的定义来验证.
(2)根据前面结果写出要用的前几项的和,从不等式的一侧入手,利用均值不等式得到要求的结论.
(3)本题是对上一问的延伸,方法和前面的类似,但题目所给的一般的各项均为正数的等差数列在整理时增加了难度,题目绝大部分工作是算式的整理,注意不能出错.
解答:解:(1)不等式x2-x<(2n-1)x即x(x-2n)<0
解得:0<x<2n,其中整数有2n-1个
∴an=2n-1,
由通项公式可得:an-an-1=2,
∴数列{an}是等差数列;
(2)由(1)知
∴Sm=m2,Sp=p2,Sk=k2
=
=0,

(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,

=
把m+p=2k代入上式化简得Sm+Sp-2Sk=≥0,
∴Sm+Sp≥2Sk
=
===

故原不等式得证.
点评:本题没有具体的数字运算但运算量非常大,它考查的是等差数列和等比数列的性质,基本不等式,实际上这类问题比具体的数字运算要困难,是几个知识点结合起来的综合问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为 an=kn-1.已知a1+a2+a3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求k的值;
(2)令bn=log2a3n+1,(n=1,2,…,),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,那么an+1-an等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项an=n2+λn+1,已知对任意n∈N*,都有an+1>an,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式an=f(n)是一个函数,则它的定义域是(  )

查看答案和解析>>

同步练习册答案