精英家教网 > 高中数学 > 题目详情
10.已知函数g(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$+2m)+2的图象关于点(0,2)对称,求m的最小正值.

分析 由题意可得 cos($\frac{π}{4}$+2m)=0,故有$\frac{π}{4}$+2m=kπ+$\frac{π}{2}$,由此求得m的最小正值.

解答 解:∵函数g(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$+2m)+2的图象关于点(0,2)对称,
∴cos($\frac{π}{4}$+2m)=0,∴$\frac{π}{4}$+2m=kπ+$\frac{π}{2}$,即 m=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z,
故m的最小正值为$\frac{π}{8}$.

点评 本题主要考查余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设a>0,函数f(x)=$\left\{\begin{array}{l}{2+(x-a)^{2},x<\frac{1}{3}}\\{ax+lo{{g}_{3}}_{\;}x,x≥\frac{1}{3}}\end{array}\right.$的最小值为1,则a=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.已知直线l:ρ=-$\frac{6}{3cosθ+4sinθ}$,曲线C:$\left\{\begin{array}{l}x=3+5cosα\\ y=5+5sinα\end{array}\right.$(α为参数).
(Ⅰ)将直线l化成直角方程,将曲线C化成极坐标方程;
(Ⅱ)若将直线l向上平移m个单位后与曲线C相切,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.试将函数y=|x-2|-|x+1|表示成分段函数的形式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-2x+c.
(1)若方程f(x)=1-x在(-∞,1]上有两个不等的实根,求实数c的取值范围.
(2)是否存在实数c,使得当a+b≤2时,函数f(x)在区间[a,b]上的值域恰为[a,b]?若存在,求出c的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某班50人的一次竞赛成绩的频数分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用组中可估计本次比赛该班的平均分为82.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(0,1).设向量$\overrightarrow{x}=\overrightarrow{a}$+(1+cosθ)$\overrightarrow{b}$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+sin2θ•$\overrightarrow{b}$
(1)若$\overrightarrow{x}$∥$\overrightarrow{y}$,且θ=$\frac{π}{3}$求实数k的值;
(2)若$\overrightarrow{x}$⊥$\overrightarrow{y}$,且θ=$\frac{2π}{3}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=cos(2x-$\frac{π}{4}$)的图象的对称轴方程为(  )
A.x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈ZB.x=kπ+$\frac{π}{8}$,k∈ZC.x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈ZD.x=kπ+$\frac{3π}{8}$,k∈Z

查看答案和解析>>

同步练习册答案