精英家教网 > 高中数学 > 题目详情

【题目】现从某学校中选出名学生,统计了名学生一周的户外运动时间(分钟)总和,得到如图所示的频率分布直方图和统计表格.

1)写出的值,并估计该学校人均每周的户外运动时间(同一组数据用该组区间的中点值作代表);

2)假设,则户外运动时长为的学生中,男生人数比女生人数多的概率.

3)若,完成下列列联表,并回答能否有90%的把握认为“每周至少运动130分钟与性别有关”?

每周户外运动时间不少于130分钟

每周户外运动时间少于130分钟

合计

合计

附:,其中

【答案】1112分钟;(2;(3)列联表详见解析,没有90%的把握认为“每周至少运动130分钟与性别有关”.

【解析】

(1)根据频率分布直方图的面积和为1以及区间间的比例关系列式求解即可.

(2)利用枚举法将所有可能的情况列举再求解即可.

(3)根据图表补全列联表,再求出分析即可.

1)由人数比可得,,,.

该校人均户外运动时间为分钟.

2)设“户外运动时长为的男女人数分布”为总事件,

7种,

“男生人数比女生人数多”为事件,包含共三个,

.

3

每周户外运动时间不少于130分钟

每周户外运动时间少于130分钟

合计

3

8

11

1

8

9

合计

4

16

20

,

所以没有90%的把握认为“每周至少运动130分钟与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,若摸出的两个都是红球出现3次获得200分,若摸出两个都是红球出现1次或2次获得20分,若摸出两个都是红球出现0次则扣除10分(即获得分).

1)设每轮游戏中出现摸出两个都是红球的次数为,求的分布列;

2)玩过这款游戏的许多人发现,若干轮游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在它们的交点处具有相同的切线.

1)求的解析式;

2)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有关部门在某公交站点随机抽取了100名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟),将数据按分组,绘制成如图所示的频率分布直方图.

假设乘客乘车等待时间相互独立.

1)求抽取的100名乘客乘车等待时间的中位数(保留一位小数);

2)现从该车站等车的乘客中随机抽取4人,记等车时间在的人数为,用频率估计概率,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,抛物线上一点到焦点的距离为,若点为抛物线准线上的动点,给出以下命题:

①当为正三角形时,的值为

②存在点,使得

③若,则等于

的最小值为,则等于.

其中正确的是(

A.①③④B.②③C.①③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前n项和为 ,且.在①;②;③这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分).

1)求数列的通项公式;

2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为FP为其上一动点,设直线l与抛物线C相交于AB两点,点下列结论正确的是(

A.|PM| +|PF|的最小值为3

B.抛物线C上的动点到点的距离最小值为3

C.存在直线l,使得AB两点关于对称

D.若过AB的抛物线的两条切线交准线于点T,则AB两点的纵坐标之和最小值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,把上各点横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,关于有下述四个结论:

1)函数上是减函数;

2)当,且时,,则

3)函数(其中)的最小值为.

其中正确结论的个数为( .

A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非典和新冠肺炎两场疫情告诉我们:应坚决杜绝食用野生动物,提倡文明健康,绿色环保的生活方式.在我国抗击新冠肺炎期间,某校开展一次有关病毒的网络科普讲座.高三年级男生60人,女生40人参加.按分层抽样的方法,在100名同学中选出5人,则男生中选出________.再从此5人中选出两名同学作为联络人,则这两名联络人中男女都有的概率是________.(第12分,第23分)

查看答案和解析>>

同步练习册答案