精英家教网 > 高中数学 > 题目详情

【题目】设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数. (Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

【答案】解:(Ⅰ)当a∈{0,1,2,3,4,5},b∈{0,1,2}时,共可以产生6×3=18个一元二次方程. 若事件A发生,则a 2﹣4b2≥0,即|a|≥2|b|.又a≥0,b≥0,所以a≥2b.
从而数对(a,b)的取值为(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12组值.
所以P(A)=
(Ⅱ)据题意,试验的全部结果所构成的区域为D={(a,b)|0≤a≤5,0≤b≤2},构成事件A的区域为A={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.
在平面直角坐标系中画出区域A、D,如图,
其中区域D为矩形,其面积S(D)=5×2=10,
区域A为直角梯形,其面积S(A)=
所以P(A)=

【解析】(Ⅰ)本题是古典概型,首先明确事件的个数,利用公式解答;Ⅱ)本问是几何概型的求法,明确事件对应的区域面积,利用面积比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f( )??
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的左、右焦点为F1、F2 , 离心率为e.直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(1)证明:λ=1﹣e2
(2)若λ= ,△MF1F2的周长为6;写出椭圆C的方程;
(3)确定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,已知a1+a2=2,a2+a3=10,求通项公式an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在平面内 的菱形 都是正方形.将两个正方形分别沿 折起,使 重合于点 .设直线 过点 且垂直于菱形ABCD所在的平面,点 是直线 上的一个动点,且与点 位于平面 同侧(图②).

(1)求证:不管点 如何运动都有 平面 ;

(2)当线段时,求二面角 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),为自然对数的底数,若曲线上存在点,使得,则的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程是 =1,F1 , F2是它的左、右焦点,A,B为它的左、右顶点,l是椭圆的右准线,P是椭圆上一点,PA、PB分别交准线l于M,N两点.
(1)若P(0, ),求 的值;
(2)若P(x0 , y0)是椭圆上任意一点,求 的值;
(3)能否将问题推广到一般情况,即给定椭圆方程是 =1(a>b>0),P(x0 , y0)是椭圆上任意一点,问 是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)现有5名男生和3名女生.若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?
(2)从{﹣3,﹣2,﹣1,0,1,2,3,4}中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条经过原点且顶点在第一象限或第三象限的抛物线?
(3)已知( +2x)n , 若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)当时, 恒成立,求的最大值;

(3)设,若的值域为,求的取值范围.(提示:

查看答案和解析>>

同步练习册答案