精英家教网 > 高中数学 > 题目详情

【题目】给出下列四种说法: ①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y= + 与y= 都是奇函数;
④函数y=(x﹣1)2与y=2x1在区间[0,+∞)上都是增函数.
其中正确的序号是(把你认为正确叙述的序号都填上).

【答案】①③
【解析】解:①中两函数的定义域均为R,故①正确; ②中函数y=x3的值域为R,y=3x的值域(0,+∞),故②错误;
③中 ,所以f(﹣x)=﹣f(﹣x),为奇函数,
,y= 是奇函数,y=2x+2x+2是偶函数,所以y= 是奇函数,故③正确;
④函数y=(x﹣1)2在[1,+∞)上单增,故④错误.
故答案为:①③
①中两函数的定义域均为x>0;
②中函数y=x3的值域为R,y=3x的值域(0,+∞);
③中两个函数都可以先进行化简,在利用奇偶性的定义看f(﹣x)和f(x)的关系即可;
④中易判断函数y=(x﹣1)2的单调增区间是[1,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某社区为丰富居民节日活动,组织了迎新春象棋大赛,已知报名的选手情况统计如下表:

组别

总计

中年组

91

老年组

16

已知中年组女性选手人数是仅比老年组女性选手人数多2人.若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.

)求表格中的数据

)若从选出的中年组的选手中随机抽取两名进行比赛,求至少有一名女性选手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取30件产品,测量这些产品的某项技术指标值,得到如下的频数分布表:

频数

2

6

18

4

(I)估计该技术指标值的平均数和众数(以各组区间的中点值代表该组的取值)

(II) ,则该产品不合格,其余的是合格产品,从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于的产品恰有1件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是 ( )

A. 8 B. 7 C. 6 D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.

(1)设圆轴相切,与圆外切,且圆心在直线上,求圆的标准方程;

(2)设平行于的直线与圆相交于两点,且,求直线的方程;

(3)设点满足:存在圆上的两点,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=loga(3x+1),g(x)=loga(1﹣3x),(a>0且a≠1).
(1)求函数F(x)=f(x)﹣g(x)的定义域;
(2)判断F(x)=f(x)﹣g(x)的奇偶性,并说明理由4;
(3)确定x为何值时,有f(x)﹣g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发, 频频爆表(是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

(1)请根据上述数据,在下面给出的坐标系中画出散点图;

(2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

(3)若周六同一时间段的车流量为60万辆,试根据(2)得出的结论,预报该时间段的的浓度(保留整数).

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数
(1)在直角坐标系中画出y=f(x)的图象,并指出函数的单调区间;
(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长半轴为,短半轴为.椭圆的两个焦点分别为,离心率为方程的一根长半轴为,短半轴为.若.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,过椭圆上且位于轴左侧的一点作圆的两条切线,分别交轴于点.试推断是否存在点,使?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案