精英家教网 > 高中数学 > 题目详情

【题目】如图在三棱锥PABCDEF分别为PCACAB的中点已知PAACPA6BC8DF5.

求证(1)直线PA∥平面DEF

(2)平面BDE⊥平面ABC.

【答案】详见解析

【解析】试题分析:(1)由D、EPC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.

试题解析:

(1)DE分别为棱PCAC的中点DEPA.

又∵PA平面DEFDE平面DEF

∴直线PA∥平面DEF.

(2)DEF分别为PCACAB的中点PA6BC8

DEPADEPA3EFBC4.

又∵DF5DF2DE2EF2

∴∠DEF90°DEEF.

PAACDEPADEAC.

ACEFEAC平面ABCEF平面ABCDE⊥平面ABC.

DE平面BDE平面BDE平面ABC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcos(x-).

(Ⅰ)求函数f(x)的最小正周期.

(Ⅱ)当x∈[0, ]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且上焦点为,过的动直线与椭圆相交于两点.设点,记的斜率分别为

1)求椭圆的方程;

2)如果直线的斜率等于,求的值;

3)探索是否为定值?如果是,求出该定值;如果不是,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆, 是圆上任意一点,线段的垂直平分线和半径相交于点

(Ⅰ)当点在圆上运动时,求点的轨迹方程;

(Ⅱ)直线与点的轨迹交于不同两点,且(其中 O 为坐标

原点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

① “若,则有实根”的逆否命题为真命题;

②命题“”为真命题的一个充分不必要条件是

③命题“,使得”的否定是真命题;

④命题函数为偶函数,命题函数上为增函数,

为真命题.

其中,正确的命题是( )

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱ABCA1B1C1的底面是边长为4的正三角形AA1⊥平面ABCAA12MA1B1的中点

(1)求证MCAB;

(2)在棱CC1上是否存在点P使得MC⊥平面ABP若存在确定点P的位置若不存在说明理由

(3)若点PCC1的中点求二面角BAPC的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx-x+a+1.

(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;

(2)求证:在(1)的条件下,当x>1时, x2+ax-a>xlnx+成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数,对任意,均有恒成立.下列说法:

的周期为

②若为常数)的图像关于直线对称,则

③若,则必有

④已知定义在上的函数对任意均有成立,且当时, 又函数为常数),若存在使得成立,则的取值范围是.其中说法正确的是____.(填写所有正确结论的编号)

查看答案和解析>>

同步练习册答案