精英家教网 > 高中数学 > 题目详情
18.1~100中所有奇数的和为(  )
A.99B.1250C.2500D.2525

分析 利用等差数列的前n项和公式求解.

解答 解:1~100中所有奇数的和为:
S50=1+3+5+…+99
=$\frac{50}{2}(1+99)$
=2500.
故选:C.

点评 本题考查等差数列的前n项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知sinx+cosx=a(0$≤a≤\sqrt{2}$),则sinnx+cosnx=($\frac{a+\sqrt{2-{a}^{2}}}{2}$)n+($\frac{a-\sqrt{2-{a}^{2}}}{2}$)n(关于a的表达式).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=|x2-a2|(α>0),动点P(m,n)满足f(m)=f(n),且m<n<0,若动点P(m,n)的轨迹直线x+y+1=0没有公共点,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{2}}{2}$,+∞)D.(0,$\frac{1}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC中角A,B,C的对边分别是a,b,c,满足c=a•cos(A+C),则tanC的最大值为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若点P(a2-1,2a+1)在直线x-2y-2=0上,则a=-1或5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若集合M={y|y=2-x},N={x|y=$\sqrt{x-1}$},则M∪N=(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)直线线$\left\{\begin{array}{l}{x=-2+tcos30°}\\{y=3-tsin60°}\end{array}\right.$(t为参数)的倾斜角为135°;
(2)已知参数方程$\left\{\begin{array}{l}{x=(t+\frac{1}{t})sinθ}\\{y=(t-\frac{1}{t})cosθ}\end{array}\right.$(t≠0).
①若t为参数,方程表示什么曲线?
②若θ为参数,方程表示什么曲线?
(3)参数方程$\left\{\begin{array}{l}{x=sinθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)表示什么曲线?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若将f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位,再将纵坐标不变,横坐标变为原来的$\frac{1}{2}$,得g(x)的图象,且g(x)图象关于直线x=-$\frac{π}{12}$对称,则f($\frac{π}{4}$)=(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=({x-\frac{π}{2}})sinx$在[-2π,2π]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案