精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的一条弦的中点作平行于抛物线对称轴的平行线(或与对称轴重合),交抛物线于一点,称以该点及弦的端点为顶点的三角形为这条弦的阿基米德三角形(简称阿氏三角形).

现有抛物线:,直线(其中是常数,且),直线交抛物线两点,设弦的阿氏三角形是.

1)指出抛物线的焦点坐标和准线方程;

2)求的面积(用表示);

3)称的阿氏为一阶的;的阿氏为二阶的;的阿氏三角形为三阶的;……,由此进行下去,记所有的阶阿氏三角形的面积之和为,探索之间的关系,并求.

【答案】(1)焦点坐标:,准线方程:;(2;(3

【解析】

1)将抛物线方程化为标准方程后即可求得焦点坐标和准线方程;

2)将直线方程代入抛物线方程,利用韦达定理可求得,根据可整理得到,代入整理可得结果;

3)由(2)知,继续求解阿氏三角形面积可知,进而分析得到;可知为无穷等比数列,利用无穷等比数列前项和的极限的求法可求得结果.

1)由得:

抛物线焦点坐标为,准线方程为:

2)将代入抛物线方程得:,则

中点

3)设是抛物线上的任意一条弦,由(2)知

设弦的阿氏三角形依次为

上述讨论表明,阶中的每一个阿氏三角形都可以生成阶中的两个阿氏三角形,且后者的面积之和是前者面积的

阶中的个阿氏三角形面积之和阶中的个阿氏三角形面积之和满足

是首先为,公比为的无穷等比数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

1)求证:

2)若二面角的大小为时,求的中线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据:

单价x(元)

6

6.2

6.4

6.6

6.8

7

销量y(万件)

80

74

73

70

65

58

数据显示单价x与对应的销量y满足线性相关关系.

1)求销量y(件)关于单价x(元)的线性回归方程

2)根据销量y关于单价x的线性回归方程,要使加工后收益P最大,应将单价定为多少元?(产品收益=销售收入-成本).

参考公式:==

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线与抛物线交于两点,且.

(1)求的方程;

(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用户编号

评分

用户编号

评分

用户编号

评分

用户编号

评分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.

(1)请你列出抽到的10个样本的评分数据;

(2)计算所抽到的10个样本的均值和方差

(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“级”的用户所占的百分比是多少?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线与抛物线交于两点,且.

(1)求的方程;

(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动点P在棱长为1的正方体ABCDA1B1C1D1的对角线BD1上,记λ.∠APC为钝角时,λ的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),,已知处有相同的切线.

1)求函数的解析式;

2)求函数在区间上的最大值和最小值;

3)判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,20瓦和55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75/千瓦时,假定该店面正常营业一年的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯更换.(用频率估计概率)

1)若该商家新店面全部安装了型节能灯,求一年内恰好更换了2支灯的概率;

2)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

查看答案和解析>>

同步练习册答案