精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.

【答案】(1)单调减区间为(2)

【解析】试题分析:

(1)由题意可得,对函数求导可得函数的单调减区间为

(2)不等式等价于

时,令,由函数的性质可得

时,可得

综合①②可得: .

试题解析:

(I)

又由题意有:

此时,

函数的单调减区间为

(说明:减区间写为的扣分).

(II)要恒成立,

①当时, ,则要: 恒成立,

再令

内递减,

时,

内递增,

②当时, ,则要: 恒成立,

由①可知,当时,

内递增,

时, ,故

内递增,

综合①②可得:

即存在常数满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的三个顶点 ,求:

1边上的高所在直线的方程;

2的垂直平分线所在直线的方程;

3边的中线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,气象部门预报,在海面上生成了一股较强台风,在据台风中心60千米的圆形区域内将受到严重破坏,台风中心这个从海岸M点登陆,并以72千米/小时的速度沿北偏西60°的方向移动,已知M点位于A城的南偏东15°方向,距A城 千米;M点位于B城的正东方向,距B城 千米,假设台风在移动的过程中,其风力和方向保持不变,请回答下列问题:
(1)A城和B城是否会受到此次台风的侵袭?并说明理由;
(2)若受到此次台风的侵袭,改城受到台风侵袭的持续时间有多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 垂直于底面 分别为 的中点.

(Ⅰ)求证:

(Ⅱ)求四棱锥的体积和截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点分别为A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC边上的中线AD所在的直线方程;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分在平面直角坐标系xOy已知两点M满足设点M的轨迹为C半抛物线),设点

C的轨迹方程

设点T是曲线上一点曲线在点T处的切线与曲线C相交于点A和点BABD的面积的最大值及点T的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, 的延长线上, 为锐角). 圆都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)若,求在区间[0,3]上的最大值;

(2)若,写出的单调区间;

(3)若存在,使得方程有三个不相等的实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(1)求该圆台母线的长;
(2)求该圆台的体积.

查看答案和解析>>

同步练习册答案