(本小题满分12分)
抛物线的焦点与双曲线
的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知抛物线
:
和点
,若抛物线
上存在不同两点
、
满足
.
(I)求实数的取值范围;
(II)当时,抛物线
上是否存在异于
的点
,使得经过
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
设椭圆(
)的两个焦点是
和
(
),且椭圆
与圆
有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线
(
)与
交于不同的两点
、
,若线段
的垂直平分线恒过点
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知点是椭圆
的右顶点,若点
在椭圆上,且满足
.(其中
为坐标原点)
(1)求椭圆的方程;
(2)若直线与椭圆交于两点
,当
时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分) 已知在抛物线
上,
的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知为坐标原点,点
分别在
轴
轴上运动,且
=8,动点
满足
=
,设点
的轨迹为曲线
,定点为
直线
交曲线
于另外一点
(1)求曲线的方程;
(2)求 面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点到
的距离比它到
轴的距离多一个单位.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点作曲线
的切线
,求切线
的方程,并求出
与曲线
及
轴所围成图形的面积
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线
过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且
,m、n是实数,对于直线
,m+n是否为定值?若是,求出m+n的值,否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com