精英家教网 > 高中数学 > 题目详情
3.下列四组函数中,表示相等函数的一组是(  )
A.f(x)=$\sqrt{{x}^{2}}$与g(x)=($\sqrt{x}$)2B.f(x)=|x|与g(x)=$\sqrt{{x}^{2}}$
C.g(x)=$\frac{{x}^{2}-1}{x-1}$与g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$与g(x)=$\sqrt{{x}^{2}-1}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是相等函数.

解答 解:对于A,f(x)=$\sqrt{{x}^{2}}$=|x|的定义域是R,g(x)=${(\sqrt{x})}^{2}$=x的定义域是[0,+∞),
定义域不同,对应关系不同,不是相等函数;
对于B,f(x)=|x|的定义域是R,g(x)=$\sqrt{{x}^{2}}$=|x|的定义域是R,
定义域相同,对应关系也相同,是相等函数;
对于C,f(x)=$\frac{{x}^{2}-1}{x-1}$=x+1的定义域是{x|x≠1},g(x)=x+1的定义域是R,
定义域不相同,不是相等函数;
对于D,f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$的定义域是[1,+∞)
g(x)=$\sqrt{{x}^{2}-1}$的定义域是{x|x≤-1或x≥1},定义域不同,不是相等函数.
故选:B.

点评 本题考查了判断两个函数是否为相等函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设U={不大于10的正整数},A={10以内的质数},B={1,3,5,7,9},则∁UA∩∁UB是(  )
A.{2,4,6,8,9}B.{2,4,6,8,9,10}C.{1,2,6,8,9,10}D.{4,6,8,10}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在下列各图中,两个变量具有线性相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{x-1}$+lg(2-x)的定义域是(  )
A.(-∞,1]∪(2,+∞)B.(1,2)C.[1,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设全集为U,对于集合A,B,则“A∩B≡∅”是“存在集合C,使得A?C且B?∁UC”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=sinx-$\sqrt{3}$cosx,且函数f(x+θ)是偶函数,其中θ∈[0,π],则θ=(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的焦点在x轴上,且经过点P$(\frac{1}{4},-1)$,
(1)求抛物线的标准方程;
(2)经过焦点F且倾斜角是$\frac{π}{4}$的直线L与抛物线相交于两点A和B,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.976,则P(-1<ξ<3)=(  )
A.0.952B.0.942C.0.954D.0.960

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的程序框图,若f(x)=logπx,g(x)=lnx,输入x=2016,则输出的h(x)=(  )
A.2016B.2017C.logπ2016D.ln2016

查看答案和解析>>

同步练习册答案