精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,ADBC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.
(I)求证:CD⊥平面PBD;
(II)求二面角A-BE-D的余弦值.
(Ⅰ)证明:因为PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,所以AB⊥BC.
PB⊥底面ABCD.
而CD?底面ABCD,所以PB⊥CD.
在底面ABCD中,因为∠ABC=∠BAD=90°,AB=AD=
1
2
BC,
所以BD=CD=
2
2
BC,所以BD⊥CD.
又因为PB∩BD=B,所以CD⊥平面PAC
(3)设平面EBD的法向量为
n
=(x,y,1),B(0,0,0),E(0,
2
3
.
1
3
)
BE
=(0,
2
3
.
1
3
)
,D(1,1,0),
BD
=(1,1,0)

BE
n
=0
BD
n
=0
,即
2
3
y+
1
3
=0
x+y=0
n
=(
1
2
,-
1
2
,1)

又∵平面ABE的法向量为
m
=(0,1,0),
∴cos
n
m
=
n
m
|
n
||
m
|
=
6
6

即二面角A-BE-D的大小的余弦值为
6
6

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,F是BC的中点.
(1)求证:DA⊥平面PAC;
(2)试在线段PD上确定一点G,使CG平面PAF,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥平面ABCD,且PA=AD=2,E、F、H分别是线段PA、PD、AB的中点.
(1)求证:PD⊥平面AHF;
(2)求证:平面PBC平面EFH.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是
5
17
13
,则P到A点的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EFAB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(Ⅰ)求证:NC平面MFD;
(Ⅱ)若EC=3,求证:ND⊥FC;
(Ⅲ)求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点,AB1与A1B的交点为O.
(1)求证:CD平面A1EB;
(2)求证:AB1⊥平面A1EB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥S-ABC中,△ABC是边长为2
3
的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.
(1)证明:AC⊥SB;
(2)求三棱锥B-CMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直四棱住ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F、G分别是棱B1B、D1D、DA的中点.
(1)求证:平面AD1E平面BGF;
(2)求证:平面AEC⊥面AD1E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=
1
2
AD
=a,G是EF的中点,则GB与平面AGC所成角的正弦值为______.

查看答案和解析>>

同步练习册答案