精英家教网 > 高中数学 > 题目详情
10.在极坐标系内,已知A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$)
(1)求|AB|的长;
(2)若A,B是等边三角形的两个顶点,求另一个顶点C的极坐标.

分析 (1)先分别求出A点、B点的直角坐标,由此能求出|AB|的长.
(2)设C的直角坐标为C(a,b),由直线垂直的性质和两点点距离公式列出方程组求出B点直角坐标,由此能求出C点的极坐标.

解答 解:(1)∵在极坐标系内,A(2,$\frac{π}{4}$),
∴x=2cos$\frac{π}{4}$=$\sqrt{2}$,y=2sin$\frac{π}{4}$=$\sqrt{2}$,
∴A点直角坐标为A($\sqrt{2},\sqrt{2}$),
∵在极坐标系内,B(2,$\frac{5π}{4}$),
∴$x=2cos\frac{5π}{4}$=-$\sqrt{2}$,y=2sin$\frac{5π}{4}$=-$\sqrt{2}$,
∴B点直角坐标B(-$\sqrt{2}$,-$\sqrt{2}$),
∴|AB|=$\sqrt{(\sqrt{2}+\sqrt{2})^{2}+(\sqrt{2}+\sqrt{2})^{2}}$=4.
(2)∵A($\sqrt{2},\sqrt{2}$),B(-$\sqrt{2}$,-$\sqrt{2}$),
∴kAB=1,∵A,B是等边三角形的两个顶点,
∴kOC=-1,
设C的直角坐标为C(a,b),
则$\left\{\begin{array}{l}{\frac{b}{a}=-1}\\{(a-\sqrt{2})^{2}+(b-\sqrt{2})^{2}=(2\sqrt{2})^{2}+(2\sqrt{2})^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\sqrt{6}}\\{b=-\sqrt{6}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\sqrt{6}}\\{b=\sqrt{6}}\end{array}\right.$,
当$\left\{\begin{array}{l}{a=\sqrt{6}}\\{b=-\sqrt{6}}\end{array}\right.$时,$ρ=\sqrt{6+6}=2\sqrt{3}$,θ=$\frac{7π}{4}$,C点极坐标为:(2$\sqrt{3}$,$\frac{7π}{4}$)
当$\left\{\begin{array}{l}{a=-\sqrt{6}}\\{b=\sqrt{6}}\end{array}\right.$时,$ρ=\sqrt{6+6}=2\sqrt{3}$,$θ=\frac{3π}{4}$,C点的极坐标为:(2$\sqrt{3}$,$\frac{3π}{4}$).
∴C点的极坐标为:(2$\sqrt{3}$,$\frac{3π}{4}$),(2$\sqrt{3}$,$\frac{7π}{4}$).

点评 本题考查线段长的求法,考查点的极坐标的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标的互化及直线垂直的性质和两点点距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,已知点D在AB边上,且$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,sin∠ACB=$\frac{5\sqrt{7}}{14}$,AC=$\sqrt{7}$,AD=1.
(Ⅰ)求CD的长;
(Ⅱ)求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在Rt△ABC中,点D是斜边AB上的点,且满足∠ACD=60°,∠BCD=30°,设AC=x,BC=y,DC=2,则x,y满足的相等关系式是y=$\frac{\sqrt{3}x}{x-1}$,(x>1,y>$\sqrt{3}$),△ABC面积的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.经过点C(4,0),且倾斜角是$\frac{3π}{4}$的直线的极坐标方程是ρcosθ+ρsinθ-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4,∠PAB=60° 
(I)若PE中点为.求证:AE∥平面PCD;
(Ⅱ)若G是PC的中点,求三棱锥P-BDG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,若AD=PA=a,$AB=\sqrt{2}a$.
(1)在PC上是否存在一点Q,使得AQ∥平面MND?若存在,求出该点的位置,若不存在,请说明理由;
(理)(2)求二面角N-MD-C大小.
(文)(2)求三棱锥P-MND的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.近期,双十中学首届游泳比赛在新建成的韩振东游泳馆中举行,在前期报名中,同学们也都表现出了极大的兴趣.为了确保赛事的顺利进行,学校邀请了湖里区游泳协会的相关人员前来协助,还在学校征招了8名同学当志愿者,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.经过直线$l:x+y-2\sqrt{2}=0$上的点P,向圆O:x2+y2=1引切线,切点为A,则切线长|PA|的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线l的方程为3x-2y+6=0,则直线l在x轴上的截距是-2;y轴上的截距是3.

查看答案和解析>>

同步练习册答案